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Abstract

Background: Data on causes of death by age and sex are a critical input into health decision-making. Priority
setting in public health should be informed not only by the current magnitude of health problems but by trends
in them. However, cause of death data are often not available or are subject to substantial problems of
comparability. We propose five general principles for cause of death model development, validation, and reporting.

Methods: We detail a specific implementation of these principles that is embodied in an analytical tool - the
Cause of Death Ensemble model (CODEm) - which explores a large variety of possible models to estimate trends
in causes of death. Possible models are identified using a covariate selection algorithm that yields many plausible
combinations of covariates, which are then run through four model classes. The model classes include mixed
effects linear models and spatial-temporal Gaussian Process Regression models for cause fractions and death rates.
All models for each cause of death are then assessed using out-of-sample predictive validity and combined into an
ensemble with optimal out-of-sample predictive performance.

Results: Ensemble models for cause of death estimation outperform any single component model in tests of root
mean square error, frequency of predicting correct temporal trends, and achieving 95% coverage of the prediction
interval. We present detailed results for CODEm applied to maternal mortality and summary results for several
other causes of death, including cardiovascular disease and several cancers.

Conclusions: CODEm produces better estimates of cause of death trends than previous methods and is less
susceptible to bias in model specification. We demonstrate the utility of CODEm for the estimation of several major
causes of death.

Keywords: cause of death, ensemble models, predictive validity, spatial-temporal models, maternal mortality, Glo-
bal Burden of Disease

Background
Data on causes of death by age and sex are a critical
input into health decision-making. Nations devote con-
siderable resources to collecting, collating, and analyzing
various types of cause of death data for this reason
[1-3]. Priority setting in public health, however, should
be informed not only by the current magnitude of
health problems but by trends in them. Whether or not
a cause of death is increasing or decreasing is important
information as to whether current disease control efforts
are working or inadequate. The rising burden of

diabetes and the policy debate it has triggered is a good
example of the importance of monitoring national
trends in causes of death [4,5].
The fundamental challenge for most countries, how-

ever, is that cause of death data are often not available
or subject to substantial problems of comparability.
Even in the 89 countries with complete vital registration
systems and medical certification of causes of death in
2009, many issues of comparability remain [6-8]. Dra-
matic changes from year to year in death rates from a
cause can be due to changes in International Classifica-
tion of Diseases (ICD) revision [9,10] or national modifi-
cations of coding rules [11-14]. In some cases, causes
such as HIV or diabetes may be systematically misclassi-
fied [8,15-21]. The fraction of deaths assigned to causes
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that are not true underlying causes of death can vary
widely and change over time [20,22-27]. In places with-
out complete vital registration, a range of sources such
as verbal autopsy studies (national or subnational), par-
tial urban vital registration, or survey/census data may
be available. Data may be available only for a limited
number of years and these data are often subject to sub-
stantial sampling and even larger nonsampling error.
Generating national assessments of causes of death by
age, sex, and year requires a strategy and methodology
to deal with this diverse set of data issues.
Efforts to model causes of death using available data

have a long history [28-34]. Initial attempts focused on
estimating causes of death for a cross-section of coun-
tries by modeling cause as a function of overall mortal-
ity levels. For example, Preston’s 1976 Mortality
Patterns in National Populations: With Special Reference
to Recorded Causes of Death [28] was the initial effort
to assess trends in causes of death taking into account
misclassification of deaths. The demand for estimates of
both levels and trends in key causes from diverse groups
have led to multiple recent studies on diarrhea, maternal
mortality, and other causes of death [29-31,35-37].
These studies have used a wide variety of analytical stra-
tegies and specific model implementations. The recent
debate on maternal mortality estimation [35,36,38-41] is
an illustration of quite different choices of the depen-
dent variable and model specifications. The use of Gaus-
sian Process Regression (GPR) and other related
techniques has been used for all-cause mortality in chil-
dren and adults and in time series cross-sectional work
on key risk factors [5,42-45]. Affordable computational
power and innovations in Bayesian statistical modeling
have fueled a steady growth in alternative estimation
strategies. This innovation is likely to continue for the
foreseeable future.
Comparing alternative modeling approaches applied to

the same cause of death is complicated by a lack of
accepted standards for good cause of death modeling
practice. Preferences for the results of alternative strate-
gies may be based not on documented performance but
on impressionistic grounds. In this paper, we propose
five general principles for cause of death model develop-
ment, validation, and reporting. We then detail a speci-
fic implementation of these principles that is embodied
in an analytical tool, CODEm - the Cause of Death
Ensemble model.

Principles for cause of death model development
1. Identify all the available data
Good cause of death modeling practice begins with a
systematic attempt to identify all the available data.
Most cause of death data is captured through a variety
of national data collection systems such as partial or

complete vital registration or national or sample regis-
tration systems with verbal autopsy. Most of these data
are not published in the scientific literature but are
available through national sources or the World Health
Organization (in the case of vital registration with medi-
cal certification of causes of death). These main sources
can also be supplemented with subnational studies on
select causes or age groups from the published literature
through systematic reviews. For some diseases, there
may be special sources of information, such as popula-
tion-based cancer registry data for mortality from
selected cancers in particular catchment areas.
2. Maximize the comparability and quality of the dataset
After all the available data have been identified, several
common challenges for the comparability and quality of
cause of death data need to be addressed, including
mapping across various revisions of the ICD, variation
in garbage coding across countries and time, misclassifi-
cation due to poor diagnostic capacity, comparability of
alternative verbal autopsy methods, completeness of
cause of death registration, and large nonsampling var-
iance. There is an extensive literature on the mapping
for different causes across revisions of the ICD [13,46];
the challenge is greater for certain specific causes of
death. A second important source of known bias is the
assignment of a substantial fraction of deaths to causes
of death that are not underlying causes of death, often
called “garbage codes”[27,47-49]. Preston in 1976
already noted that trends in cardiovascular disease over
time were profoundly different if garbage codes were
taken into account [28,36]. The Global Burden of Dis-
eases, Injuries, and Risk Factors (GBD) 1990 Study
introduced simple algorithms for redistributing deaths
from major garbage codes [34], and these were refined
for the GBD 2000 Study work [50]. More detailed algo-
rithms driven by a more detailed examination of disease
pathology have since been proposed [1,51]. Special
methods have been proposed for selected causes, such
as HIV in populations where the cause is often misclas-
sified due to stigma or other factors. For example, Birn-
baum et al. found that many HIV deaths in South
Africa had been classified to other causes including
tuberculosis, pneumonias, and other infectious diseases
[52]. The substantial difference in the strategy for cor-
recting misclassification in two recent studies on mater-
nal mortality illustrates the spectrum of approaches in
use [36,39,40]. Uncertainty in the correction for known
bias should, in principle, be propagated into the uncer-
tainty in the results. Methods for quantifying this uncer-
tainty, however, have not yet been developed. A third
critical factor in enhancing comparability and quality is
to correct for the fact that in some vital event registra-
tion systems, not all deaths are captured. Death rates
based on these systems need to be corrected for the
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completeness of death registration. Various methods
have been proposed to correct for completeness [34,53].
Even after various known biases due to ICD classifica-

tion changes, garbage coding, and completeness have
been taken into account, the results of some studies
may be subject to large nonsampling error. Nonsam-
pling error can come about from a wide range of factors
that can affect vital registration, verbal autopsy, and
other surveillance data sources. Explicit criteria should
be used to detect extreme outliers in the rates or cause
fractions derived from different sources. Based on expli-
cit criteria, outlier data points should be excluded from
the cause of death modeling analysis.
3. Develop a diverse set of plausible models
There are a myriad of choices to be made when model-
ing cause of death trends. Cause of death data are often
sparse for many low-income countries and may also be
more available for certain time periods such as 1995 to
2005 than for earlier or later periods; predictions for
data-sparse time periods and/or populations are often
sensitive to subtle differences in model specification or
the form of the dependent variable; modeling cause-spe-
cific mortality rates or cause-fractions can yield very dif-
ferent results; and choosing to use educational
attainment rather than income per capita can lead to
major differences in the predicted trend in causes of
death in places with economic downturns. We believe
that good modeling practice starts by casting a wide net
in terms of proposed models.
Whatever models that are proposed, however, should

meet basic plausibility criteria. Known strong biological
or behavioral relationships should be respected. For
example, models for the age-specific stroke death rate
should have a positive coefficient on mean systolic
blood pressure of the population, models for lung can-
cer should have a positive coefficient on tobacco con-
sumption, and so on. A set of models for which these
known directions of relationships are respected provides
a more robust platform for assessing models and creat-
ing model ensembles.
The diverse set of models we test also includes various

ways of combining the predictions of multiple individual
models. Experience in many fields - ranging from
meteorology, soil chemistry, and stocks to the Netflix
Challenge and others - have demonstrated that ensem-
ble models have smaller prediction error than the best
single model [54-61]. Ensemble models that are
weighted combinations of the posterior distributions of
component models provide lower error for the point
estimate and more accurate uncertainty intervals
[62-66]. Additionally, ensemble models capture uncer-
tainty not only due to the parameters in any one model
but also the uncertainty of predictions due to differences
in specification across models. Many methods have been

proposed and used for developing weights for compo-
nent models in an ensemble, including Bayesian Model
Averaging (BMA), averaging of all plausible models, and
using fixed or arbitrary weights [67].
4. Assess the predictive validity of each plausible individual
model and of ensemble models
In-sample fit is not a robust measure of prediction when
data are sparse or missing. Instead, out-of-sample pre-
dictive validity is the appropriate measure [66,68-72]. If
one model generates better out-of-sample predictions
than another, we should prefer this model for the task
of prediction. Assessing predictive validity requires hold-
ing out some fraction of the data from model building
and then assessing the predictions from the model
against the data that have been held out. The compel-
ling logic that modeling strategies used for prediction
should be assessed through out-of-sample predictive
validity is unlikely to be controversial. There are, how-
ever, many options for assessing predictive validity that
deserve exploration, including which data to hold out,
how many repeated samples to perform, and which
metrics of validity to calculate.
In bioinformatics and genomics, the standard predic-

tive validity approach is to perform five- or 10-fold
cross-validation, in which 10% or 20% of the data are
held out and models are developed on the remaining
data, a process which is then repeated multiple times to
ensure stability. The statistical literature suggests that
leave-one-out methods overestimate performance,
instead recommending that larger hold-outs be used
[73-75]. For cause of death estimation, we can identify
five distinct scenarios for prediction: a) countries with
no data; b) countries with missing data years but with
data from years before and after the missing sequence;
c) data missing at the beginning of the sequence; d) data
missing at the end of the sequence; and e) data for some
age groups such as children or reproductive-age females
and not for other age groups. Countries may often be
characterized by a combination of these scenarios. Dif-
ferent models can and do in fact perform differentially
on these various tasks. We believe that the data hold-
out strategy should mimic the task required of the
model. In other words, we should hold out sequences of
data in proportion to how often the model would need
to fill in such a sequence (Figure 1 illustrates the con-
struct). In this way, the hold-out will reflect the appro-
priate mix of the five scenarios that have been
described. Producing train-test datasets through a hold-
out strategy should be repeated often enough to yield
stable assessments of predictive validity that are not a
function of the idiosyncratic nature of a particular ran-
domly generated data hold-out.
The metrics of predictive validity are more complex.

Three distinct dimensions should be assessed: errors in
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predicting levels, errors in predicting trends, and the
adequacy of uncertainty intervals. First, for assessing
prediction error for the quantity of interest, one can
imagine metrics that assess absolute error or relative

error and metrics that are based on variances or abso-
lute deviations. Second, two models may yield similar
metrics of prediction error on the levels of mortality but
one model may more robustly predict the trend in a
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given cause of death. For many applications of cause of
death modeling, estimating an accurate trend may be
even more important than estimating an accurate level.
Predictive validity for trends can be assessed by examin-
ing the first differences over time for the prediction and
the data and assessing error in this dimension. Third, it
is particularly important to derive uncertainty intervals
for cause of death estimation that are accurate. Cover-
age of the uncertainty intervals of any proposed model
should be reported taking into account the sampling
and nonsampling error estimated for a model. The
reported uncertainty interval for a model is the uncer-
tainty in the expected value of the death rate. This
should be much narrower than the interval for the pre-
diction of data measurements of that expected quantity
of interest. An ideal model should have data coverage
close to or greater than 95%.
Some ensemble models use information on the perfor-

mance of component models to generate the weights on
the component models [65]. If weights are chosen from
in-sample fit, these may not yield the best results. In
cases where ensemble weights need to be selected on
the basis of out-of-sample performance, a train-test 1-
test 2 strategy needs to be used. In these cases, some
percentage of the data, such as 70%, are set aside for the
training set, and the remaining data are randomly split
into two test datasets. The first test is used to develop
ensemble weights, and the performance of all compo-
nent models and the ensembles are compared using the
second test dataset. In this way, the comparison in the
second test between the component models and variants
of ensemble models is equitable, using data that have
not previously been used for any modeling strategy.
Train-test 1-test 2 strategies will need to be repeated
multiple times until stable performance metrics have
been achieved.
5. Choose the model or ensemble model with the best
performance in the out-of-sample predictive validity tests
In selecting a best single model or model ensemble, the
three types of assessments may have to be balanced.
The model with the lowest root mean squared error
(RMSE) may do worse on trend or have coverage that is
too high or too low. Balancing these attributes will
depend on the specific cause of death application. An
overall judgment to choose the final model or model
ensemble should take into account preferences for these
three domains. A set of preferences should in principle
be translated into an objective function that captures
the desired trade-offs between different dimensions of
performance. Most users will, in fact, want to balance
various attributes of predictions, and they will want to
examine metrics of predictive validity that capture these
various attributes. In all cases, model selection should
be designed to be robust to outliers.

Methods
Cause of Death Ensemble model (CODEm) - an integrated
cause of death modeling environment
We have developed a cause of death modeling environ-
ment to facilitate work on modeling cause-specific mor-
tality for a large number of countries, which can be
applied to any cause of death for which data are avail-
able. To design this modeling tool we have developed a
specific implementation of the five principles that we
have outlined above. Many specific choices were
required to develop a computationally tractable but flex-
ible strategy that is consistent with these principles. In
this section, we describe in detail these design choices,
including the development of a large set of plausible
models, the development of ensemble models using
adaptive weighting systems, the assessment of out-of-
sample predictive validity, and final results using mater-
nal mortality as a case study.
We illustrate the application of CODEm to modeling

several major causes of death using the cause of death
database that has been developed at the Institute for
Health Metrics and Evaluation. This database has been
developed following the first two principles outlined
above. For reference, Table 1 summarizes the available
cause of death data from vital registration systems, ver-
bal autopsy studies, surveillance systems, and various
surveys/censuses with some cause-specific data. In addi-
tion, it includes data based on information collected at
hospitals, mortuaries, burial sites, etc. Data inputs have
been processed to deal with various issues to enhance
comparability. For example, Naghavi et al. have devel-
oped algorithms to systematically deal with problems of
ICD revision comparability and the phenomenon of
“garbage coding”[49]. In other cases, datasets have been
made comparable by mapping from aggregated age
groups to five-year age groups. The end result of this
work is a database of multiple sources of cause of death
data that is continuously updated as new datasets are
identified. While we use this database to illustrate the
application of CODEm, in principle CODEm can be
applied to any cause of death dataset.

Table 1 CODEm data sources by type and decade

Type 1980-1989 1990-1999 2000-2010 Total

Cancer registry 389 505 392 1286

Other 0 14 52 66

Sibling history 410 807 325 1542

Surveillance 3 31 55 89

Survey/census 1 54 49 104

Verbal autopsy 138 175 143 456

Vital registration 799 969 909 2677
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Developing plausible models
Model families
We have developed four families of models that reflect
the choice of the dependent variable and the use of spa-
tial-temporal patterns in the data. Table 2 shows the
four families of models. One choice is whether to model
cause fractions or death rates; the second choice is
whether to use a simple linear hierarchical model or to
also capture spatial-temporal patterns in the unex-
plained component of the data. As highlighted in Table
2, taking both choices into account yields four modeling
families. We model cause fractions using the logit of the
cause fraction. Mortality has long been shown to have
an exponential relationship to units of time [28,76], so
we model death rates using the natural logarithm (ln) of
rates. For each family of models, we include multiple
possible covariate combinations, resulting in possibly
hundreds of different models.
Choosing covariates
For each cause of death, one could postulate many feasi-
ble models based on the published literature where
cohort studies, cross-sectional time series studies, or
intervention trials have suggested that there is a rela-
tionship between a covariate and a specific cause of
death. Because of multicollinearity, including all possible
covariates in a model often yields implausible signs on
covariates or unstable coefficients, as well as overfitting.
There is an extensive literature on choosing covariates
in these circumstances, including forward and backward
stepwise regression [77,78], LASSO (L1-constrained
regression) [79], elastic nets [80], Bayesian variable
selection [81], and other covariate selection methods.
Especially when predicting out of sample for countries
with no data or very limited data, the specific choice of
covariates can make a large difference on prediction
[82,83]. Building on the various traditions for choosing
covariates, we have developed an algorithm that cap-
tures both strong views on the plausible relationships
between covariates and the relevant cause of death as
well as our desire to propose a diversity of plausible
models. Ideally the uncertainty of the covariates would
also be taken into account, but it is not computationally
feasible at present to bootstrap each covariate.
Our solution to this problem is a covariate selection

algorithm that takes into account prior information on
which covariates are important and what sort of effect

they should have on the dependent variable. We first
select n covariates and categorize them into three
groups based on how strong the evidence is of the cau-
sal connection. For each disease, the literature was
searched for previous studies showing correlations
between available covariates and cause-specific mortality
(particularly at the population level), and disease experts
were consulted. Covariates with strong proximal rela-
tionships, such as etiological or biological roles in the
disease process, are ranked as level 1. Covariates for
which there is strong evidence for a relationship, but
not a direct biological link, are placed in level 2. Covari-
ates with weak evidence for a relationship, or which
would be distal in the causal chain and thus may be
mediated by factors in levels 1 or 2, are categorized as
level 3. Based on the literature, we assign a prior on the
direction of each covariate. Covariates that should
increase the dependent variable are classified as having a
positive prior, while those that should be inversely
related are given a negative prior. If there is conflicting
or inconclusive evidence as to the expected direction,
the user can also specify that either direction would be
valid. By definition, we would not expect to assign an
ambiguous direction for a level 1 covariate.
After priors have been set according to level of evi-

dence and presumed direction, a list of all possible cov-
ariate combinations for level 1 is created. We test all 2n-
1 combinations of level 1 covariates. We retain all mod-
els where the sign on all covariates in that model is in
the expected direction and the coefficient is significant
at the p < .05 level. In each case, the model is estimated
with the mixed effects structure used in the spatial-tem-
poral model described below (random effects on super-
region, region, and age), with the covariates under
exploration included as fixed effects. So as to not have
to retest each of these covariate combinations with the
linear model family described below, we make the sim-
plifying assumption that the inclusion of an additional
country random effect will not change the direction or
significance of the fixed effects; this assumption has held
true in our testing and greatly reduces computational
burden.
Level 2 covariates are assessed using a more computa-

tionally efficient approach. First, for each level 1 model
that was retained, we create a list of 2m possible level 2
models (where m is the number of level 2 covariates).
The first, which has no level 2 covariates included, has
already been tested and is retained. Next, each of the m
possible models in which one covariate is added to the
level 1 model is tested. If adding the level 2 covariate
does not affect either the significance or the sign on any
level 1 coefficients, and the level 2 covariate itself fits
the priors on direction and significance, then it is
retained as another possible model. If, however, the

Table 2 Families of CODEm component models

Linear mixed effects
model

Spatial-temporal
model

Ln(cause-specific
death rate)

1 3

Logit(cause fraction) 2 4
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level 2 covariate does not fulfill the priors or forces any
of the level 1 covariates to violate their priors, then it is
dropped.
In addition, all other possible level 2 models that contain

that covariate are also dropped. For example, if we have a
level 1 model A, and three possible level 2 covariates, X, Y,
and Z, we first test each of them individually against level
1 model A. Suppose × and Y fulfill the priors, but Z vio-
lates them. Then, we can eliminate the level 2 models Z, X
+Z, Y+Z, and X+Y+Z. Thus, we can test just one more
level 2 model, X+Y. If that model fulfills the prior, then we
are left with 4 different models from our original level 1
model: A (level 1 only), A+X, A+Y, and A+X+Y. This is a
conservative approach because it reduces computational
burden - both for the software which thus has fewer mod-
els to evaluate, and for the analyst who typically lacks the
sorts of information that would be necessary to formulate
conditional priors for multiple covariates. However, if the
analyst has sufficient time and computational power, all
covariates can be designated as level 1 and thus all combi-
nations of covariates will be tested.
Next, we take each of the models resulting from level

2 and use the same process as described for level 2 on
the level 3 covariates. In this way, we can either test or
preemptively eliminate all (2n-1)*2m*2l possible covariate
models (where n = the number of level 1 covariates, m
the number of level 2 covariates, and l the number of
level 3 covariates) in an efficient manner. Ultimately we
obtain a set of all possible covariate combinations that
fulfill our priors on covariate direction. This ensures
that we do not exclude any potentially valuable informa-
tion in our modeling process. We run the covariate
selection tool for both cause fractions and death rates
and then create both mixed effects only and spatial-tem-
poral models for each set of chosen covariates.
This covariate selection method, which produces a list

of models for which prior covariate relationship beliefs
are maintained, allows for great flexibility in model
choice. If a user specifies all-cause mortality as a level 1
covariate, then a classical Preston-type cause of death
model would be tested. Or if there is strong reason to
believe that cohort effects are prominent for a cause of
death, then cohort-lagged measures could be incorpo-
rated. For instance, in the case of lung cancer an analyst
could test five-year cohort lags of smoking prevalence
(in which the value used to estimate lung cancer in 60
year olds in 2005 would be the smoking prevalence
amongst 55 year olds in 2000), 10-year cohort lags (in
which lung cancer deaths in 60 year olds in 2005 would
be based on smoking prevalence amongst 50 year olds
in 1995), and so forth. By using covariate selection to
select a broad pool of logical models, different strategies
such as these can be employed and compete on the
same metrics of performance.

Linear mixed effects models
Model families 1 and 2 use a mixed effects model with
fixed effects on covariates (selected via the mechanism
explained below) and age dummies, plus hierarchical ran-
dom effects by super-region, region, country, and age.
The fixed effects allow us to capture broad trends in both
age patterns and the impacts of key biological and envir-
onmental covariates. The random effects allow for
improved estimation by adding intercept shifts by GBD
super-region, region, and country (the 187 countries are
grouped into 21 regions based on both geographical
proximity and epidemiologic similarity; the 21 regions
are further grouped into seven more general super-
regions), and changes in age patterns across regions and
countries. The models of this family follow this form:

ln
(
rates,r,c,y,a

)
= βiXis,r,c,y,a + βad + πs + πs,r

+πs,r,a + πs,r,a,c + εs,r,c,y,a

logit
(
cause fractions,r,c,y,a

)
= βiXis,r,c,y,a

+βad + πs + πs,r + πs,r,a + πs,r,a,c + εs,r,c,y,a

Where:
s = super-region index; r = region index; c = country

index; y = year index; a = age index
[countries are nested within regions, which are nested

within super-regions]
bi = coefficient on covariate i
Xis, r, c, y, a = covariate i for observation s, r, c, y, a
ba = coefficient on age offsets
d = age dummy variables
πs = random intercept on super-region
πs, r = random intercept on region (nested within

super-region)
πs, r, a = random intercept on age (nested within

region)
πs, r, a, c = random intercept on country (nested within

region-age)

εs,r,c,y,a ∼ N(0, σε • I)

Because of the small numbers that are often encoun-
tered for certain age groups, countries, or causes of
death, covariate models may occasionally predict num-
bers that are negative in natural log or logit space. To
avoid creating very large residuals that can negatively
affect subsequent prediction steps, we have introduced a
floor such that the predictions never go below a rate of
.01 deaths per 100,000 people. In addition, log rate
models, unlike logit cause-fraction models, are not con-
strained from predicting more deaths than the all-cause
mortality rate. We have greater confidence in all-cause
mortality predictions, because there are typically more
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data available for predicting all-cause mortality rates in
the form of censuses, demographic and health surveys,
vital registration systems that do not capture cause of
death, etc. We have therefore placed a ceiling on log
rate models such that they can never exceed the log all-
cause mortality rate.
Spatial-temporal models
Model families 3 and 4 begin with nearly the same
mixed effects model used for families 1 and 2, but with
the removal of the random country effect. The spatial-
temporal models then utilize additional regression analy-
sis to take into account how the dependent variable
further varies across time, space, and age. This type of
spatial-temporal regression model has been used in
many applications, including the estimation of maternal
mortality [36]. We do this by calculating the residual
(predicted - observed dependent variable) for each data
point and then run local regression in three dimensions
on the residual. The process assumes that residuals con-
tain valuable information that cannot be directly
observed but nonetheless vary systematically across geo-
graphic region, time, and age group. This allows us to
predict how much the observed dependent variable dif-
fers from the mixed effects model’s prediction and to
account for these differences.
In order to perform the local regressions we must

cycle through each observation in the dataset, weight
every other observation in the dataset relative to it, and
then find the weighted mean of the residual term. The
first dimension across which we calculate weights is age.
We use a simple exponential decay function

wai,j =
1

e�×|agegroup i−agegroup j|

such that if observation j has the same age group as the
observation we’re predicting for (i), then it receives an age
weight of 1. When ω is set to its default value of 1, if j is in
the adjacent age group, it receives a weight of .367, if it is
two age groups away the weight is .135, etc. We chose this
weighting scheme recognizing that mortality estimates
typically change smoothly over age. For causes with sparse
data, ω can be decreased to induce greater smoothing over
age; in causes of death that we expect to have very differ-
ent levels by age, ω can be increased to reduce smoothing
over age groups.
Next, we weight all observations j relative to observation

i in time by using a weighting scheme similar to the tricu-
bic weights used in traditional LOESS local regression:

wti,j =

⎛
⎝1 −

(
| yeari − yearj |

argmax
(| yeari − yearj |) + 1

)λ
⎞
⎠
3

The key difference between our time weights and tra-
ditional LOESS weights is that we leave l as a para-
meter that can be tuned to increase or decrease how
much smoothing occurs across time. We use l = .5 for
countries that have data. If we were predicting the year
1995 in a time series from 1980 to 2010, then this
would correspond to a time weight of 1 for observations
from 1995, a weight of .42 for observations from 1994
or 1996, a weight of .27 for 1993 or 1997, a weight of
.09 for 1990 or 2000, and a weight of close to 0 for
1980 or 2010. For countries without data, we have
much less certainty in their trends; thus, we use a higher
l of 2, which smooths out predictions and avoids issues
of compositional bias.
The age and time weights are multiplied together for

each observation, producing a weight that reflects proxi-
mity in both dimensions. Then, the weights are rescaled
to reflect geographical proximity to the observation
being predicted. We use the following formula to rescale
the weights:

wi,j = ζ × wai,j × wti,j∑ (
wai,j × wti,j

)
For data from country i

wi,j = ζ × (1 − ζ ) × wai,j × wti,j∑(
wai,j × wti,j

)
For data from region i, but not country i

wi,j = (1 − ζ )2 × wai,j × wti,j∑ (
wai,j × wti,j

)
For data from super-region i, but not region i
wi,j = 0 for data from outside of super-region i
We use a value of ζ = .9 for countries with data, such

that 90% of the weight in the local regression is given to
observations from the same country, 9% is given to data
from the same region but outside the country, and just
1% is given to data in other parts of the super-region.
When there are no data for a country, we use ζ = .7,
which gives 70% of the weight to data from within the
region and 30% to data from other parts of the super-
region; this reflects the fact that we wish to borrow
more strength in such data-sparse areas.
In addition to the geographic weighting described

above, we also rescale the weights inside a country
when both national and subnational data are present. In
cases where we have both national and subnational
observations for the country we’re predicting, we rescale
the weights such that 90% of the in-country weight goes
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to the nationally representative data points and 10% is
assigned to the subnational data. This reflects our desire
to capture nationally representative trends.
Once these weights have been calculated, weighting

every observation in the dataset relative to the one
being predicted, it a simple matter of calculating a
weighted average of the residuals from the mixed effects
regression. This “predicted residual” is then added back
onto the mixed effects prediction, creating an estimate
that more closely takes into account aspects of the data
that cannot be captured by a simple covariate model.
Gaussian Process Regression
Gaussian Process Regression (GPR) is a Bayesian estima-
tion technique that is well-suited to estimating time ser-
ies data because it maintains correlation in the
uncertainty over time. The resulting estimates also track
in-sample data very closely without significantly chan-
ging the predictions out of sample. We utilize GPR as
the final step in our spatial-temporal component mod-
els. The inputs required are the mean function, ampli-
tude, scale, degree of differentiability, and data variance.
Each of the models developed for the different combi-

nations of covariates in the two spatial-temporal families
provides the mean function (a prior estimate of the
dependent variable). We run a separate instance of GPR
for each country-age group, such that GPR will simply
pick up temporal trends. Amplitude is meant to capture
the uncertainty in the mean function; a higher ampli-
tude means that the GPR will be more likely to move
far away from the mean function, conditional on the
data. We estimate the amplitude for each model using a
robust estimate of the standard deviation of the resi-
duals from each first stage model - specifically, we com-
pute the standard deviation as 1.4826 times the median
absolute deviation (MAD) estimate of the residuals.
The GPR parameters governing the covariance func-

tion are scale and differentiability. We assume a scale of
10 years and a differentiability of 2. In principle, these
can be varied and the performance of different models
tested out of sample to choose the best parameters. We
have not, however, varied these as the performance of
GPR in these applications does not appear to be very
sensitive to the choice of these parameters.
For data variance, we would ideally like to capture

variance due to sample size and sample design, as well
as the data variance due to the myriad sources of non-
sampling variance. Sampling variance can usually be
estimated from each source on the basis of sample size
and sample design. The more challenging task is to esti-
mate the data variance due to nonsampling error. Work
on child mortality and maternal mortality suggests that
nonsampling variance is often substantially larger than
sampling variance. In settings where multiple measure-
ments in the same place and time period are available, it

is possible to directly compute nonsampling variance.
However, in most cases we have insufficient data in the
same country-year to provide a direct measurement of
nonsampling error.
To approximate the nonsampling error, we first com-

pute a simple spatial-temporal weighted average of the
natural log of the death rates. We then estimate for
three cases the MAD estimator of the residual from this
weighted average: for countries with more than 10-year
sequences of vital registration data (representing systems
with the highest data recording), for subnational data
when national data are also present for the country, and
all other cases. The MAD times 1.4826 is a robust esti-
mate of the standard deviation [84]. The MAD estima-
tor of the residuals includes both sampling and
nonsampling error as well as the systematic variation in
death rates not adequately captured by the spatial-tem-
poral weighted average. As such it is an overestimate of
nonsampling variance (NSV). We believe it is preferable
to overestimate rather than underestimate data variance
and have used the NSV for each data type from this
procedure for all models.
Uncertainty estimation
In order to find uncertainty on model families 1 and 2,
we first draw multiple times from the variance-covar-
iance matrix of the fixed effects. We then simulate pre-
dicted death rates using these draws of beta, giving us
an estimate of the parameter uncertainty. In order to
capture the systematic variance in the model, we also
add to each draw a random value from Normal(0, ssyste-

matic) where s2
systematic is estimated as the square of

1.4826 times the MAD of the model residuals minus the
estimated nonsampling variance.
In order to be able to capture uncertainty and the cor-

relation structure over time in uncertainty and to be
able to distinguish between uncertainty in the quantity
of interest and sampling and nonsampling variance, we
have used GPR [85] for both families of spatial-temporal
models (3 and 4). We use the output of all covariate
possibilities for the two spatial-temporal local regres-
sions as the mean function ("prior”) in GPR. Our imple-
mentation of GPR follows the approach of Rajaratnam
et al. used for child and adult mortality estimation
[42,86]. GPR input derivations are explained in the pre-
vious section.
Creating ensemble models
In addition to the component models in the four
families described above, following the literature on pre-
diction we have also created and tested ensemble mod-
els that are themselves made up from weighted draws
from the posterior distribution of component models.
Both theoretical and empirical findings suggest that
ensemble models often have slightly better predictions
but substantially more accurate assessments of
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prediction uncertainty [87]. One potential key criticism
of cause of death predictions is that uncertainty due to
model specification is not captured. Ensemble models
provide a clear strategy to capture specification uncer-
tainty in the prediction intervals.
There are multiple approaches to developing compo-

nent models. Ensemble Bayesian Model Averaging
(Ensemble BMA) models as proposed by Raftery, Gneit-
ing, et al. [65] assess the probability of each model condi-
tional on the training data. The ensemble model is then
created based on weights that are equal to the probability
of each model divided by the sum of the probabilities of
all models. Ensemble BMA models have been found to
outperform the best component model in weather fore-
casting, hydrology, and other fields [59,65,87,88]. Ensem-
ble BMA weights are generally based on the performance
of the model in the training data (see below for the crea-
tion of training and test datasets).
In the case of our cause of death applications, we have

found that in-sample performance in the training data-
set can be a poor predictor for performance out of sam-
ple in the test data. Specifically, some models with good
or even the best performance in sample may yield poor
performance out of sample. In these cases, it is possible
to develop ensemble weights based on the probability of
the model conditional on the test data, not the training
data. To demonstrate objectively the performance of an
ensemble weighted by the out-of-sample performance of
the component models requires a strategy of splitting
the data into three groups: training, a test dataset 1 used
for estimating the probability of the model conditional
on the test data, and a test dataset 2 to assess perfor-
mance of the component models and ensembles based
on out-of-sample performance.
Based on the Netflix challenge [54] and other predic-

tion efforts, other ensemble strategies may also perform
well. Simple averaging of all plausible models is one pos-
sibility. Simple averages of all models or of the top per-
forming models can avoid adding to the variance in the
model due to misestimation of the weights on each com-
ponent model. A compromise approach is to average the
top X models, which effectively puts 0 or 1/X weights on
each component model. Another option is to use a
monotonically declining function for weights based on
the ranked performance of each component. This
approach provides some reward for better performance
but does not try to directly estimate a weight from the
data. One example of a monotonically declining weight
on each component model is to use the function:

Wi =
ψ(N−ranki)∑N
j=1

(
ψ(N−j)

)

Where N is the number of models and ψ is a para-
meter influencing the relative weighting of models. In
this case, if there were four total models to choose from
and ψ = 1.2, the top performing model would be given
32.2% weight, the second model 26.8%, the third 22.4%,
and the last 18.6%. We use the weights to determine
how many draws from each model to add to the final
pool. We take 1,000 draws overall, so the top perform-
ing model would have 533 draws included in the aver-
age in this example, whereas the worst performer would
have only 67 draws contributing to the final average.
Figure 2 demonstrates how the weighting function
works for different values of ψ in the case of 100 com-
ponent models.
In an ensemble of 100 possible component models, a

ψ of 1.2 would result in 167 draws from the top model,
80 for the fifth place model, 32 from the 10th place
model, two from the 25th place model, etc., and no
draws at all from models ranked below the top 32
(effectively placing a threshold such that the bottom
68% of models in this case have no bearing on the final
predictions). In contrast, an ensemble with ψ = 1 would
take equal draws from all models.
We develop and test ensembles that include ψ values

from 1.0 to 1.2 in intervals of .01. We can then compare
these different ensemble models using predictive validity
performance on the second set of test data. This enables
us to choose an ensemble model that weights the com-
ponent models adaptively. An ensemble with some good
models and some very bad models would perform best
with a higher ψ value; perhaps surprisingly, previous
studies have shown that an ensemble with all models
having similar performance often performs best when all
models are included (i.e., in the case of CODEm, when a
lower value of ψ[55] is chosen).
Because the component models and ensembles are

developed without any access to the second test dataset,
the evaluation of performance of each strategy is based
on a fair out-of-sample test.

Assessing predictive validity
Our approach to predictive validity can be divided into
two distinct parts: the strategy for developing train and
test datasets, and the metrics used for assessing predic-
tive validity.
Developing train-test 1-test 2 datasets
As noted above, when developing single models and
ensemble models, we need to create datasets where the
original data are split into three components: the train
dataset, the test 1 dataset, and the test 2 dataset. While
much of the literature in bioinformatics uses 80-20
splits of the data when there is only one test set, we
have compromised and used 70% of the data for training
the models, 15% for test 1, and 15% for test 2. We have
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found that results from this type of “knockout” strategy
provide stable model orderings when the process is
repeated 10 to 30 times. Figure 3 demonstrates that
component model rankings on the test 1 dataset are
susceptible to noise when there are just a few hold-outs
but begin to stabilize after approximately 10 hold-outs.
Furthermore, it demonstrates that in-sample fit is a
poor predictor of out-of-sample fit.
Our knockout pattern operates as follows: we create

two randomly shuffled lists of all 187 countries, × and
Y. We take the first country in list × and mark for
which age-year pairs it is missing data for the selected
cause and sex. We then knock out any data that are pre-
sent in those age-years for the first country from list Y.
For instance, if the country from list × had a missing-
ness profile like that of Scenario D in Figure 1 (in which
data after 2000 are not present) and the list Y country
had all age-year pairs present, then we would knockout
the data from 2001 to 2010 for the list Y country, leav-
ing in the data from 1980 to 2000. We repeat this pro-
cess for pairs of countries until 15% of the data in list Y

are knocked out, assigning those data points to the test
1 set. We then continue down the list of country pairs
until an additional 15% of the data have been knocked
out, which we assign to test 2. Note that this test is
excessively stringent, because it does not take into
account whether or not the country from list Y actually
contains data in the same age-years as the list × country,
making the task harder in most cases.
We create 25 sets of train-test-test datasets based on

the knockout strategy just described, then run all the
component models on the training data. We use the
results of each component model to predict for the test
1 data. We then assess the performance of each compo-
nent model in the test 1 dataset using the metrics
described below. Ensemble model weights are estimated
based on the performance of component models in test
1 data. Then the ensemble models are evaluated for 21
values of ψ (1.0 to 1.2 at intervals of .01) on the test 1
data. The ensemble weighting scheme that achieves the
best predictive validity metrics on test 1 is then used to
create the final predictions. Its predictive validity is
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Figure 2 Example weighting schemes for 100 component models at different values of ψ.
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= Rank 1 = Rank 169 = Rank 338

Figure 3 Heatmap of stability in maternal mortality component model rankings. Each row represents a component model, and each
column corresponds to how many hold-outs are used when ranking. Rows are sorted by rankings using all 25 hold-outs. Cells are colored based
on their ranking, with the green models being the best and red the worst. The last column displays in-sample ranks. The figure shows that
rankings stabilize as hold-outs increase, and that in-sample ranking does not correlate well with out-of-sample.
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assessed along with the component models on the test 2
data.
Metrics of predictive validity
Predictive validity is evaluated using three metrics. First,
we evaluate how well each model for a particular cause
of death predicts age-specific death rates using the
RMSE of the natural log of the death rate. Log death
rates are generally comparable across age groups, so the
choice of RMSE of the natural log of death rates means
that we are equally concerned about a 10% error in one
age group compared to another. Metrics that focus on
the absolute error would tend to give highest weight to
model fit in the age groups with higher rates, but most
users of cause of death data actually attach greater
importance to accuracy at younger ages where each
death represents more years of life lost. We have thus
chosen a method of assessing accuracy that we think
balances the need to develop models that predict both
an accurate overall level of mortality as well as an accu-
rate age pattern. Second, we also desire models that pre-
dict accurate trends. To do this, for the test data we
compute where possible the log death rate in year t
minus the log death rate in year t-1. We also compute
the same metric for the prediction. We then count the
percentage of cases for which the model predicts a
trend in the same direction as the test data.
In order to compare the performance of multiple

families of models that may use different measures and
transformations of cause of death data (e.g., logit cause
fractions versus log death rates in our case), we must
choose a single space in which to assess all the models.
We have chosen to assess performance in log rate space.
We prefer to assess accuracy of rates instead of cause
fractions because they are generally more useful from a
public health perspective - for instance, a declining rate
represents progress on combatting a cause of death,
whereas a declining cause fraction could result from a
stagnating death rate for one cause but an increase in
another. Log rates are used because of the well-estab-
lished log-linear relationship with death rate and time
[28,76].
Ideally, we would like to use out-of-sample coverage

as an additional metric in comparing component mod-
els’ performance. Unfortunately, it is computationally
intractable to compute full confidence intervals for
every single component model once the model pool
becomes large. As computational speed improves, cover-
age can be added into the model ranking scheme. In the
case of CODEm, we find the computationally expedient
expectation of each component model for the ranking
process.
We rank each component model on the median of

these two metrics across hold-outs (lower being better
for RMSE, higher being better for the trend test). We

then sum up the ranks across the two metrics for each
component model, and assign overall rank 1 to the
model with the smallest sum of ranks, rank N to the
model with the highest sum of ranks, etc. These ranks
are then used in the ensemble weighting equation
described above.
We similarly rank the ensemble models for different

values of ψ on these two metrics and compute the sum
of their ranks across hold-outs for test 2. We choose the
value of ψ that minimizes the sum of ranks and use it to
make our final set of predictions.
Finally, an important property of the models is that

they generate plausible prediction intervals. We there-
fore compute the percent of data in the test set that
were included in the 95% prediction interval. The pre-
diction interval is based both on the uncertainty in the
predicted death rate and the data variance for each
observation. We report the mean value of each of these
metrics across the 25 test 2 datasets.

Results
We demonstrate the logic of CODEm and the perfor-
mance of various models for maternal mortality. Data
availability for maternal mortality are summarized in
Table 3. Overall, there are 4,563 site-years available for
analysis. In addition, there are a number of applicable
covariates available for analysis. Table 4 provides the
class 1, 2, and 3 covariates for maternal mortality, along
with the priors placed on the direction of their
coefficients.
The process of running covariate selection for the four

families of models yields a total of 338 models, as shown
in Additional File 1 for maternal mortality. In order to
find these models, the covariate selection tool began
with 1,984 possible models each for rates and cause
fractions. We ran 261 regressions on rates and 226 on
cause fractions and found 98 rate models and 71 cause
fraction models that fulfilled all of our priors, each of
which was tested as both a simple mixed effects model
and a spatial-temporal model. The difference between
1,984 possible combinations of covariates and the 261
for which regressions were run relates to the algorithm

Table 3 CODEm data sources for maternal mortality, by
source type and decade

Type 1980-1989 1990-1999 2000-2010 Total

Other 0 5 41 46

Sibling history 410 807 325 1542

Surveillance 3 23 51 77

Survey/census 1 9 41 51

Verbal autopsy 49 72 87 208

Vital registration 799 944 896 2639
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for class 2 and class 3 covariates where models are not
evaluated if the simpler model with a covariate does not
have the sign and statistical significance expected.
As seen in Figure 4, it is evident that performance var-

ies widely across models; RMSE ranges from 0.616 to
0.774 across component models in test 1, while the
trend test ranges from 0.572 to 0.667. In-sample fit
ranges from 0.368 to 0.550 in RMSE and 0.569 to 0.740
on the trend test. The performance on test 2 is very
similar to that of test 1, as also seen in Figure 5, sug-
gesting that model performance is not a function of the
particular hold-outs used for the assessment. Figure 4
shows several important patterns. First, for RMSE, in-
sample fit for all the spatial-temporal GPR models,
whether for cause fractions or for rates, are much better
than for the mixed effects models. This is to be
expected given that these models tend to capture some
of the patterns in the residuals that are structured over
space and time. However, in the case of maternal mor-
tality, the figure also shows that in the out-of-sample
RMSE tests, these models tend to also do better,
although there is clear overlap between classes of mod-
els. Of note, within a class of models, particularly the
spatial-temporal GPR models, there is little relationship
between in-sample fit and out-of-sample RMSE. This
visual impression is confirmed by the rank order corre-
lation coefficient within model class between in-sample
RMSE and out-of-sample RMSE on test 2, which are
-0.369, 0.463, 0.887, and 0.830 for spatial-temporal
cause fractions, spatial-temporal rates, linear cause frac-
tions, and linear rates, respectively. The strongest rela-
tionship observed between in-sample performance and
out-of-sample predictive validity is for linear cause frac-
tion models. However, even a rank order correlation
coefficient of 0.887 within that class of models means
that some poorly performing models might be selected
if selection is based only on in-sample fit. For the better

performing classes of models, in this case the spatial-
temporal cause fraction and rates models, in-sample fit
is not a useful guide for model choice at all.
Figure 4 also shows a similar analysis of performance

for the trend test, but the patterns are distinctly differ-
ent. In the case of maternal mortality, in sample the
spatial-temporal models do better than the linear mod-
els. However, out of sample, the cause fraction models
perform substantially better than the rates models. In
fact, in both test 1 and test 2 cases, the linear cause
fraction models have on average slightly better perfor-
mance than the spatial-temporal models for cause frac-
tions; there is however substantial overlap in these sets
of models on this test. Within model class, the rank
order correlation coefficient for the trend test is 0.675
for spatial-temporal cause fractions, -0.174 for spatial-
temporal rates, 0.975 for linear cause fractions, and
0.984 for linear rates.
The high correlation of out-of-sample performance for

RMSE between test 1 and test 2 provides reassurance
that the ordering of models is not specific to the parti-
cular set of hold-outs used. Nevertheless, it is important
to ascertain how many hold-outs are required to get a
stable assessment of the ordering of different models
within and between classes. Figure 6 illustrates how the
stability in component model rankings improves as
more hold-outs are added. After 25 hold-outs, the rank
correlation exceeds .98; 40 hold-outs yields rank order
correlation coefficients in excess of 0.99 for maternal
mortality. Figure 3 shows that for maternal mortality the
top ranked models have all become rather stable after
25 hold-outs; it further demonstrates that in-sample fit
is poorly correlated with out-of-sample predictive valid-
ity. Extra hold-outs tend to further stabilize the ranking
of the poorer performing models rather than change the
order of the top models in this case.
Notice in Additional File 1 that spatial-temporal mod-

els on the logit of the cause fraction occupy the top 88
slots out of 338 total component models. This indicates
that spatial-temporal models do indeed do a better job
of capturing levels and trends not present in covariates
alone. The fact that cause fraction models perform bet-
ter than rate models suggests that cause fractions, which
are constrained to be less than the all-cause mortality
rate, may benefit from the additional information pro-
vided by being multiplied by the all-cause mortality rate
when calculating final predictions. The covariates for
the best ranked model included the natural log of the
total fertility rate, skilled birth attendance coverage, and
the natural log of lag-distributed income per capita.
Similar models with additional covariates, such as the
fourth-ranked model, which added age-specific fertility
rates, performed worse in many cases, suggesting that
while additional covariates may improve in-sample fit

Table 4 Covariate priors for maternal mortality covariate
selection

Covariate Level Prior

In-facility delivery coverage 1 -

Skilled birth attendance coverage 1 -

Malnutrition (proportion under 2SD) 1 -

Ln(total fertility rate) 1 +

Age-specific fertility rate 1 +

Health system access score 2 -

Antenatal clinic (four visits) coverage 2 -

Antiretroviral (ARV) adjusted HIV prevalence 2 +

Ln(neonatal death rate) 2 +

Education (year per capita) 3 -

Ln(lag-distributed income per capita) 3 -
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they often cause overfitting that harms out-of-sample
predictions.
Table 5 shows how well ensemble models of varying

levels of ψ perform on test 1 predictive validity. In the

case of maternal mortality a ψ of 1.17 has been chosen.
This is a rather steep weighting scheme, giving over half
the weight to just the top five component models - the
top component model receives 139 draws, relative to
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Figure 4 In-sample, test 1, and test 2 performance on RMSE and trend test for maternal mortality component models.
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102 draws for the third-place model, 46 for eighth place,
15 for 15th place, etc (see the last column of Additional
File 1). Interestingly, ψ of 1.0 - which gives equal
weights to all models - performed the worst on both
predictive validity tests, suggesting that there was at
least one bad component model that would harm pre-
dictions if included.
Table 6 provides the performance on test 2 of the best

component model (the spatial-temporal model on logit
(cause fraction) with covariates of age-specific fertility
rate, the natural log of total fertility rate, and the natural
log of lag-distributed income per capita) and of the best
ensemble model. Results are consistent with previous
findings that out-of-sample predictive validity metrics
are improved by creating an ensemble of models instead
of just using the top component model. RMSE
decreases, trend test performance remains about the
same, and the prediction interval coverage also
increases.
Finally, we checked the test-retest stability of our

method by running the same model with 25 hold-outs

twice on maternal mortality. The Pearson correlation
coefficient for the log rates of the final mean estimate
(by country, year, and age) was 0.9998 for the two runs,
indicating that the method gives consistent results with
25 random hold-outs. Nevertheless, given that the hold-
out process and assessment of predictive validity is sto-
chastic by nature, the exact set of top performing mod-
els for a cause of death can vary between model runs
even if the predictions are highly consistent.
Table 7 shows summary results comparing the ensem-

ble model to the best component model for several
causes of death, including cardiovascular disease,
chronic respiratory disease, cervical cancer, breast can-
cer, and lung cancer. The table highlights that in each
case, to a varying degree, the ensemble model has as
good as or slightly better predictive validity metrics than
the component model. In most cases the out-of-sample
performance for RMSE and trend test both improve or
remain roughly equal when comparing the ensemble to
the top component model. The one exception is lung
cancer in males, in which the ensemble model has
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slightly worse RMSE and trend; however, the coverage
of the ensemble models is much better than that of the
component, so this is most likely a desirable trade-off.
In no case do we observe that the ensemble model per-
forms significantly worse than the top component
model, and in many instances the ensemble is a sub-
stantial improvement. In all cases, the uncertainty inter-
val coverage is better for the ensemble model than the
best component model.

Discussion
In this paper, we have proposed a framework for cause
of death model development. We have illustrated this
approach for several causes of death including maternal
mortality, cardiovascular disease, chronic respiratory dis-
eases, cervical cancer, breast cancer, and lung cancer
mortality. Our strategy yields an ensemble model with
smaller error in estimated rates than the single best
model. It yields more accurate trends and often better
uncertainty intervals with nearly 95% data coverage in
out-of-sample prediction tests. We have used maternal
mortality in this paper to illustrate the results of

CODEm, but we have applied this strategy to many
causes with similar findings; in addition, separate papers
utilizing this method include more detailed results for
maternal mortality, breast cancer, and cervical cancer
[89,90]. The model development strategy we have used
has already been widely applied in other fields; what we
have done is to develop a pragmatic implementation of
these ideas to cause of death modeling.
Debate on cause of death estimation, such as for

maternal mortality [36,38-41], can be traced to three
components: the database used, including covariates; the
processing of data to enhance comparability and quality;
and model building. By encompassing a very wide range
of models and model families combined with objective
assessment of performance through out-of-sample pre-
dictive validity tests, we expect that our approach will
substantially decrease debate around model building.
Debate in the future will more likely focus on the data
processing step. With regards to the database, most ana-
lysts will agree that a more systematic collation of all
data sources is preferable to fewer data sources. The
real issue is how one uses or modifies observations in
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the largest database. Controversy will remain on how to
deal with misclassification in cause of death assignment,
subnational and nonrepresentative samples, and the
exclusion of data points due to extreme nonsampling
variance. We hope that by proposing and implementing
a structured approach to model building, the idiosyn-
cratic aspect of final model choice will be minimized or
even eliminated. Debate on data processing will con-
tinue and hopefully be fertile ground for methods inno-
vation in the future
In various conferences following the release of the

maternal mortality studies in 2010 [36,38,39], some
commentators argued that simple models should be pre-
ferred to more complex models such as GPR. Underly-
ing these comments are two possible perspectives. First,
simple or parsimonious models may actually generate
better predictions out of sample. Given that we test all
models, whether simple, more complicated, or ensemble
on a level playing field, if simple models are better they
will be selected as the basis for making predictions in

our modeling framework. The second possible interpre-
tation of this view is more philosophical, namely that
simple models are intrinsically preferable regardless of
predictive performance. In other fields, like weather
forecasting, consumers do not demand simple models;
they demand accurate models. Not surprisingly, weather
forecasters - who have in some ways an easier task than
cause of death estimation, as their forecasts are shorter
and have much more data to rely on - use dynamic
ensemble models where the weights on various models
are selected each day for tomorrow’s forecast [87] in
order to generate predictions with the smallest error
and accurate uncertainty intervals. This is entirely
inconsistent with a call from some in global health to
sacrifice performance of cause of death models for the
sake of simplicity. In this era, we all use complex devices
such as computers, cell phones, or even watches. Most
of us do not understand how the circuitry or machinery
within the device works. We judge these devices by how
well they perform, not how well we understand their

Table 5 Ranking and predictive validity metrics for maternal mortality for different values of ψ

Rank ψ RMSE (in-sample) RMSE (test 1) Trend test (in-sample) Trend test (test 1)

1 1.17 0.368 0.617 0.737 0.737

2 1.16 0.368 0.617 0.737 0.737

3 1.15 0.368 0.617 0.737 0.737

3 1.11 0.369 0.617 0.737 0.737

5 1.08 0.369 0.616 0.737 0.737

6 1.12 0.368 0.617 0.737 0.737

7 1.18 0.368 0.617 0.737 0.737

8 1.06 0.370 0.616 0.736 0.736

9 1.03 0.376 0.615 0.734 0.734

10 1.04 0.373 0.615 0.735 0.735

11 1.09 0.369 0.616 0.737 0.737

12 1.05 0.371 0.616 0.736 0.736

13 1.1 0.369 0.617 0.737 0.737

14 1.14 0.368 0.617 0.737 0.737

14 1.13 0.368 0.617 0.737 0.737

16 1.19 0.368 0.617 0.737 0.737

17 1.02 0.381 0.614 0.732 0.732

18 1.2 0.368 0.617 0.737 0.737

19 1.07 0.369 0.616 0.737 0.737

20 1.01 0.390 0.614 0.726 0.726

21 1 0.412 0.624 0.709 0.709

Table 6 Predictive validity measures for final CODEm maternal mortality model

Model RMSE (in-sample) RMSE (test 2) Trend test (in-sample) Trend test (test 2) Coverage (in-sample) Coverage (test 2)

Top ensemble 0.368 0.626 0.739 0.665 99.2% 97.3%

Top component 0.369 0.636 0.737 0.663 99.2% 96.9%

Performance of the top component model is also shown for comparison.
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inner workings. We believe that the same ethos ought to
be applied for cause of death modeling. The predictive
validity metrics we have described in this paper are use-
ful not only for ranking researchers’ own models and
creating ensembles, but we believe they can also provide
a framework within which modeling strategies from
diverse research groups can be fairly compared. Since it
is good out-of-sample predictive performance that
should ultimately decide which models are most useful,
then we think models should be evaluated and com-
pared on those grounds.
The current implementation of our strategy has sev-

eral limitations. The Netflix challenge experience sug-
gests that pooling results from very different modeling
strategies performs better [54]. We have used four mod-
eling families that are the product of modeling natural
log rates and logit cause fractions, mixed effect linear
models, and spatial-temporal GPR models. This creates
a diverse pool of models that compete in predictive
validity tests. For example, combined with the covariate
selection approach, we had in the case of maternal mor-
tality 7,936 possible component models. Nevertheless,
many other modeling strategies are possible; given the
experience in other areas, expanding the universe of
modeling families that are included in the model pool
will likely improve prediction performance. The funda-
mental challenge to expanding beyond our four families

of models is computational power and time. In our
implementation, we have already reached the limit of
what is currently practical - each model run takes
approximately 600 hours of processor time, which for
our cluster is equal to about 5,000 GFlops. As computa-
tional power and cloud computing get progressively
cheaper and estimation algorithms more and more opti-
mized, it may be possible in future iterations to increase
the diversity of the model pool and therefore the predic-
tion performance of the model ensemble. As with any
modeling strategy, the approach outlined here depends
critically on the database that is used for estimation, the
quality of the covariates, and the assessment of the evi-
dence on the expected relationships for covariates.
Although model building is becoming a computation-

ally intensive but replicable and less subjective task, the
challenge remains of capturing uncertainty due to cor-
recting data for bias, excluding data points as outliers,
and measuring and forecasting covariates. Garbage code
redistribution algorithms are largely based on expert opi-
nion, although some empirical approaches have been
applied [51]. Methods to capture uncertainty in these
approaches need to be developed. For verbal autopsy, the
results of the Population Health Metrics Research Con-
sortium verbal autopsy studies [91,92] provide a potential
strategy for assessing misclassification uncertainty. For
outliers or observations with high nonsampling variance,

Table 7 Predictive validity measures for CODEm results for several selected causes of death

Cause Model RMSE
(in-sample)

RMSE
(test 2)

Trend test
(in-sample)

Trend test
(test 2)

Coverage
(in-sample)

Coverage
(test 2)

Cardiovascular disease
(male)

Ensemble 0.123 0.290 0.764 0.699 0.993 0.853

Best component
model

0.122 0.292 0.764 0.693 0.992 0.822

Cardiovascular disease
(female)

Ensemble 0.162 0.304 0.750 0.698 0.993 0.903

Best component
model

0.162 0.305 0.751 0.707 0.993 0.877

Maternal mortality Ensemble 0.368 0.626 0.739 0.665 0.992 0.973

Best component
model

0.369 0.636 0.737 0.663 0.992 0.969

Cervical cancer Ensemble 0.528 0.944 0.667 0.593 0.988 0.938

Best component
model

0.489 0.951 0.678 0.587 0.982 0.912

Breast cancer (female) Ensemble 0.438 1.105 0.678 0.572 0.985 0.923

Best component
model

0.428 1.129 0.675 0.570 0.981 0.875

Lung cancer (male) Ensemble 0.359 0.769 0.714 0.599 0.993 0.841

Best component
model

0.330 0.759 0.738 0.617 0.993 0.800

Lung cancer (female) Ensemble 0.383 0.734 0.705 0.580 0.995 0.932

Best component
model

0.371 0.756 0.738 0.597 0.994 0.897
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one can imagine a number of strategies. Instead of
assigning 0 or 1 weights to a data point, 0 if the point is
an outlier and 1 if it is not, numbers from 0 to 1 could be
assigned that represent the probability that a data point
is an outlier. Repeated sampling of the dataset could be
undertaken using this matrix, allowing for propagating
uncertainty. Alternatively, outliers could be assigned
higher nonsampling variance in techniques such as GPR
that can take this into account. The covariates we use as
inputs to our models also have measurement error, and
because they are often themselves modeled they may also
have prediction uncertainty. It is unclear if incorporating
this uncertainty would be helpful in predicting causes of
death since we test out-of-sample data coverage to check
that it is close to 95%, but because of computational lim-
itations we have been unable to test the usefulness of
including such information. These approaches all repre-
sent attractive avenues for further exploration. The main
limitation is the computational time and cost that such
schemes would imply.
In many cases, cause of death information is most

valuable when placed into context with the entire cause
of death composition of the population. The relative
burdens of causes of death are often more influential in
priority setting than are the individual causes’ respective
sizes. For this reason, it is often desirable to produce
estimates of mutually exclusive and collectively exhaus-
tive cause of death categories. Ideally, one would design
a model that predicts for all causes of death simulta-
neously, accounting for correlations and dependencies
between them. There are, however, three major limita-
tions on modeling all causes simultaneously: severe
restrictions on model diversity, limitations on data
usability, and infeasibility for analysis.
First, current computational restrictions make it

intractable to fit multinomial or seemingly unrelated
regression models while still utilizing the wealth of spa-
tial-temporal information present in the datasets. We
have found that borrowing strength across space, time,
and age groups in the data has substantially improved
predictive accuracy. Current techniques do not allow for
us to take advantage of such modeling advances within
a multinomial framework, unfortunately; as computa-
tional power continues to increase and Bayesian sam-
pling methods for highly multidimensional problems
improve, such a model will likely be feasible in the
future.
Second, for many causes of death such as maternal

mortality, there are extensive datasets that provide mea-
surements of only one cause of death. For example,
modeling all causes of death of reproductive aged
women simultaneously would limit the use of these rich
sources of data. The same situation exists for many spe-
cific causes of death where there are cause-specific

datasets, such as population-based cancer registries that
do not include cause of death information for a set of
mutually exclusive and collectively exhaustive causes.
Finally, we believe it is infeasible for all studies of causes
of death to always examine all causes simultaneously.
Researchers will legitimately want to investigate single
causes of death at a time in addition to more compre-
hensive studies covering all causes.
For those cases such as the GBD Study, where esti-

mates are undertaken for a set of mutually exclusive
and collectively exhaustive cause of death categories, we
recommend a two-step process. First, produce models
with the best out-of-sample predictive validity for each
cause of death independently, taking advantage of all
available high quality data and capturing spatial-tem-
poral patterns in the data. Second, predicted cause of
death estimates for each cause can be modified to sum
to the total all-cause mortality predictions. This might
be desirable because there are substantially more data
available for all-cause mortality, meaning we have more
confidence in these predictions of total mortality than
we would in simply combining all the single cause mod-
els together and taking the sum to be all-cause mortal-
ity. The most appropriate methods for combining
estimates of cause-specific mortality in a country-sex-
age group to equal the all-cause mortality estimates that
appropriately take into account the variance of different
predictions by cause is a topic of active research beyond
the scope of this study. While such an approach is not
ideal, it outperforms models that make the trade-off of
using much more restrictive assumptions in order to fit
within a framework that models all causes simulta-
neously. Demonstrations of the overall predictive validity
of the two-step approach applied to selected cases will
be an important area for future research.
Our model building strategy implemented in CODEm

and alternative implementations that will surely come in
the future all require access to substantial computational
power. Cheaper cloud computing and processors mean
that many research groups around the world already
have access to the required computational resources.
These groups will likely pursue even more sophisticated
approaches in the coming years that have more diverse
model pools and capture uncertainty that stems from
data processing. But for many users, even the current
strategies will be beyond their available computational
power. We believe that it will be important to catalyze
access to these approaches for users especially in the
developing world. Through internet-accessed servers
dedicated to this type of processing, it should be possi-
ble to find a feasible way to make these tools more
widely available.
No doubt, vigorous debate on the level and trend of

important causes of death such as maternal causes,
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malaria, and cardiovascular diseases will continue. Such
debates will continue even in high-income countries
with complete vital registration and medical certification
of causes of death because of misclassification biases.
Cause of death estimation will continue to rely on
appropriate modeling strategies to better understand
real, underlying trends in diseases and injuries. Consen-
sus around a set of principles for cause of death model
building will be of great and immediate value to the glo-
bal public health community who rely on this informa-
tion for monitoring progress with development goals.
CODEm is one pragmatic implementation of the princi-
ples laid out in this paper, one that will have extensive
use in the GBD 2010 Study. More widespread imple-
mentation of these principles will hopefully continue to
emerge over the next few years, leading to a much bet-
ter understanding of levels and trends in key causes of
death.

Additional material

Additional file 1: Descriptions, rankings, and predictive validity
metrics for maternal mortality component models.
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