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Abstract

Background: Self-reported height and weight are commonly collected at the population level; however, they can
be subject to measurement error. The impact of this error on predicted risk, discrimination, and calibration of a
model that uses body mass index (BMI) to predict risk of diabetes incidence is not known. The objective of this
study is to use simulation to quantify and describe the effect of random and systematic error in self-reported
height and weight on the performance of a model for predicting diabetes.

Methods: Two general categories of error were examined: random (nondirectional) error and systematic
(directional) error on an algorithm relating BMI in kg/m2 to probability of developing diabetes. The cohort used to
develop the risk algorithm was derived from 23,403 Ontario residents that responded to the 1996/1997 National
Population Health Survey linked to a population-based diabetes registry. The data and algorithm were then
simulated to allow for estimation of the impact of these errors on predicted risk using the Hosmer-Lemeshow
goodness-of-fit χ2 and C-statistic. Simulations were done 500 times with sample sizes of 9,177 for males and 10,618
for females.

Results: Simulation data successfully reproduced discrimination and calibration generated from population data.
Increasing levels of random error in height and weight reduced the calibration and discrimination of the model.
Random error biased the predicted risk upwards whereas systematic error biased predicted risk in the direction of
the bias and reduced calibration; however, it did not affect discrimination.

Conclusion: This study demonstrates that random and systematic errors in self-reported health data have the
potential to influence the performance of risk algorithms. Further research that quantifies the amount and direction
of error can improve model performance by allowing for adjustments in exposure measurements.
Introduction
In medicine, prediction tools are used to calculate the
probability of developing a disease or state in a given
time period. Within the clinical setting, predictive algo-
rithms, such as the Framingham Heart Score 31 [1] are
used to calculate the probability that a patient will de-
velop coronary heart disease – have contributed import-
ant advances in individual patient treatment and disease
prevention [2]. Similarly, applying predictive risk tools to
populations can provide insight into the influence of risk
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factors, the future burden of disease in an entire region
or nation, and the value of interventions at the popula-
tion level. Risk prediction is a key aspect of clinical work
and has recently been applied to population health
through the Diabetes Population Risk Tool (DPoRT) [3].
The prediction of disease risk using risk algorithms is
based on a set of baseline variables that may contain
measurement error that could affect the prediction, dis-
crimination, and accuracy of the tool.
Increasingly, prediction tools have incorporated self-

reported patient information to facilitate their use [3-5].
These self-reported responses can contain random error
due to imperfect recall or misunderstanding of the ques-
tion. They can also result in systematic error or bias
(over- or underreporting), as a result of psychosocial
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factors such as social desirability. The influence of error
contained in self-reported risk factor data on disease
prediction has not been systemically studied. In particu-
lar, evidence on the influence that measurement error
has on predictive accuracy is lacking. By understanding
the consequence of measurement error on risk algo-
rithms, efforts could be made to correct for these errors
and thus improve the accuracy and validity of risk algo-
rithms. Furthermore, developers of risk tools can use
this information to better weigh the pros and cons of
using different types of data (i.e., self-reported or
measured).
Measurement error has mainly been examined with

respect to its effect on risk estimates, such as risk ratios
or hazard ratios [6-8]. This research has led to improve-
ments in the critical appraisal and interpretation of epi-
demiologic findings. While useful for understanding the
effects of error on etiological estimates of disease, the
findings from these studies do not directly apply to risk
algorithms. The objective of this study is to use simula-
tion to understand the effect of measurement error in
self-reported risk factors on the performance of a simple
risk algorithm to predict diabetes. This study will focus
on the measurement of body mass index (BMI), which is
defined as an individual’s body mass in kilograms (kg)
divided by the square of the individual’s height in meters
(m) (kg/m2). This measure is the focus because it has
the greatest influence on diabetes risk [9-13].

Methods
Two general categories of error were examined in this
study: random (nondirectional) error and systematic
(directional) error. Data were simulated to allow for esti-
mation of the impact of hypothetical values of random
and systematic error on predicted risk and two measures
of predictive accuracy: calibration and discrimination.
Calibration is achieved in a prediction model if it is able
to predict future risk with accuracy such that the pre-
dicted probabilities closely agree with observed out-
comes. A model that does not have good calibration will
result in a significant over- or underestimation of risk.
Calibration is not an issue if the purpose of the model is
only to rank-order subjects [14]. In this study, calibra-
tion was measured using the Hosmer-Lemeshow (H-L)
goodness-of-fit statistic (χ2H-L) where observed and
expected values are compared across deciles of risk
[15-17]. It is calculated by dividing the cohort into dec-
iles of predicted risk and comparing observed versus
predicted risk resulting in a modified version of H-L chi-
square statistic (χ2H-L). Consistent with D’Agostino’s ap-
proach for evaluating observed and predicted values using
risk algorithms, the value 20 (99th percentile of a chi-
square with 8 degrees of freedom) was used as a cutoff to
mark sufficient calibration [18]. Discrimination is the
ability to differentiate between those who are high risk
and those who are low risk – or, in this case, those who
will and will not develop diabetes given a fixed set of vari-
ables. The receiver operating characteristic (ROC) curve is
the accepted way to measure discrimination. An ROC
curve repeats all possible pairings of subjects in the sam-
ple who exhibit the outcome and do not exhibit the out-
come and calculates the proportion of correct predictions,
thereby resulting in an index of resolution. This area
under the ROC curve is equal to the C-statistic where 1.0
implies perfect discrimination and 0.5 implies no discrim-
ination [14,19,20]. A perfect prediction model would per-
fectly resolve the population into those who develop
diabetes and those who do not. Accuracy is unaffected by
discrimination, meaning a model can possess good dis-
crimination yet poor calibration [21].
The simulation was initiated using parameters taken

from the same population-level data used to develop
DPoRT [3]. These data represent 23,403 Ontario resi-
dents that responded to the 1996/1997 National Popula-
tion Health Survey (NPHS) conducted by Statistics
Canada [22] and were linkable to health administrative
databases in Ontario. In the NPHS, households were
selected though stratified, multilevel cluster sampling of
private residences using provinces and/or local planning
regions as the primary sampling unit. The survey was
conducted by telephone and all responses were self-
reported (83% response rate). Persons under the age of
20 (n = 2, 407) and those who had self-reported diabetes
were excluded (n = 894). Those who were pregnant at
the time of the survey were also excluded (n = 241) due
to the fact that baseline BMI could not be accurately
ascertained, leaving a total of 9,177 males and 10,618
females. The diabetes status of all respondents in Ontario
was established by linking persons to the Ontario Diabetes
Database (ODD), which contains all physician-diagnosed
diabetes patients in Ontario identified since 1991. The
database was created using hospital discharge abstracts
and physician service claims. The ODD has been validated
against primary care health records and demonstrated
excellent accuracy for determining incidence and preva-
lence of diabetes in Ontario (sensitivity of 86%, specificity
of 97%) [23,24].
Height and weight were assumed to come from a nor-

mal distribution with mean and standard deviation equal
to those from the derivation cohort shown in Table 1.
Individual values were generated by multiplying the
standard deviation to a random variable from the stand-
ard normal distribution. This value is then added or sub-
tracted from the mean (depending on the random
number generated) and replicated 9,177 times for males
and 10,618 for females. The logistic model relating BMI
and diabetes was estimated according to the following
equation:



Table 1 Starting values taken from 1996–1997 National
Population Health Survey (NPHS) used in simulation

Parameter Males Females
mean (standard deviation) (N = 9,177) (N = 10,618)

Height (m) 1.768 (0.075) 1.627 (0.069)

Weight (kg) 81.624 (13.805) 64.761 (12.320)

BMI (kg/m2) 26.076 (3.995) 24.495 (4.586)

Correlation for height
and weight (rhw)

rhw = 0.475 rhw = 0.311

10-year DM incidence 9.17% 7.35%
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Logit Pið Þ ¼ β0 þ β1BMIi þ β2BMI2i
¼ Xiβ

where Xiβ={1,BMIi,BMIi
2} and Pi represents the probabil-

ity of developing diabetes in 10 years:

Pi ¼ PðYI ¼ Xij Þ ¼ exp Xiβð Þ
1þ exp Xiβð Þ

Using the generated values for the regression coeffi-
cients β0, β1, and β2, the probability of the person having
diabetes was calculated for each individual. The coeffi-
cients in the algorithms remain constant for each calcu-
lation in order to replicate the current practice where
the same risk equation is applied to all individuals.
We assumed that the observed variance of height and

weight contain some level of error and therefore the
observed variance can be separated into the true vari-
ance of the measurement (σ2true) in the population and
the variance that can be attributed to measurement error
(σ2error). Random measurement error was defined by the
intraclass correlation coefficient (ICC) as an estimate of
the fraction of the total measurement variance asso-
ciated with the true variation among individuals [25,26].
Systematic error, which we refer to as bias in our study,
is defined as the difference in observed height and
weight from the true value (without measurement error).
In our study, the bias was defined as an overestimation
in height (0 to 3.0 cm) and an underestimation of weight
(0 to −3.0 kg) varied in increments of 0.5 units. The
magnitude of bias in height and weight were taken from
a recent systematic review that summarized the empir-
ical evidence regarding the concordance of objective and
subjective measures of height and weight [27], consistent
with those found in the Canadian population [28]. True
BMI is defined as the height and weight when measure-
ment error is equal to zero.
The simulation of each sample population was run

500 times. For each simulation Pi was calculated twice
for each individual. The first calculation is done using
the observed height and weight values and the second is
related using the true BMI value (in the absence of the
specified measurement error). H-L statistic and C-
statistic were also calculated twice using both true BMI
and observed BMI values to allow for comparison. All
simulations were done using SAS statistical software
(version 9.1, SAS Institute Inc., Cary, NC) and random
numbers were generated using the RAN family of func-
tions (RANUNI and RANNORM).
We had three a priori hypotheses prior to running the

simulation. First, we hypothesized that random measure-
ment error would affect both discrimination and calibra-
tion of a model due to the increase in observed variance
in BMI and misclassification. Secondly, we hypothesized
that systematic error would have minimal effects on dis-
crimination (the ability to rank order subjects) but sig-
nificant effects on calibration of a model. Thirdly, we
hypothesized that random error would not affect the
overall predicted risk value and that systematic error
would influence the predicted risk in the direction of the
systematic error.

Results
To test the quality of the simulated data we estimated
the risk equation in the data and successfully generated
almost identical parameters as those generated from the
derivation cohort (Table 2). Overall, the trends in the
results presented below were similar between males and
females, although the magnitude of effect differed
reflecting the differences in starting baseline values seen
in Table 1.
Under the presence of random error, the average

values of the observed BMI were similar to the true
values; however, the variance was increased. For ex-
ample, in females when the ICC of height and weight
were set to 0.8, the observed mean BMI +/− standard
deviation (SD) was equal to 24.47 +/− 4.51 compared to
the true value of 24.44 +/− 3.87. The probability of
developing diabetes predicted from the risk algorithm
under the presence of random error was higher than the
estimate applied to the data without random error. In
other words, the presence of random error biased the
overall predicted risk estimate upwards. The differences
between the predicted risk with and without error were
relatively small, with the biggest differences being 0.99%
higher than the true value, which would predict 90 more
diabetes cases for males, and 0.89% higher for females,
resulting in the prediction of 95 more diabetes cases for
females. Random error in weight had a bigger influence
on the predicted risk than error in height. When the
ICC for weight was held at 1.0 (i.e., no error) but ICCs
in height were allowed to vary (from 0.5 to 1.0), the lar-
gest overestimate in diabetes risk was 0.30% in males (28
more diabetes cases) and 0.16% in females (70 more dia-
betes cases). When the ICC for height was held at 1.0
and the ICCs for weight were allowed to vary, the largest



Table 2 Values of actual risk equation relating BMI to probabilities of developing diabetes using logistic regression
values from the National Population Health Survey (NPHS) 10-year follow-up cohort and values achieved from the
simulation model

Males – NPHS data (N = 9,177) Males – Simulation (N = 9,177)

Variable Coefficient Standard error P-value Coefficient Standard error P-value

BMI 0.4202 0.0383 < 0.0001 0.4263 0.0111 < 0.0001

BMI2 −0.00437 0.000618 < 0.0001 −0.00448 0.001049 < 0.0001

Intercept −10.4034 −10.4897

Model properties

Calibration (χ2HL) χ2HL = 5.67, p-value = 0.6841 χ2HL =9.951, p-value = 0.3689

Discrimination (C-statistic) C = 0.677 C = 0.686

Females – NPHS data (N = 10,618) Females – Simulation (N = 10,618)

Variable Coefficient Standard error P-value Coefficient Standard error P-value

BMI 0.4565 0.0554 < 0.0001 0.4593 0.0779 < 0.0001

BMI2 −0.00509 0.00091 < 0.0001 −0.00514 0.00141 < 0.0001

Intercept −10.8967 −10.5899

Model properties

Calibration (χ2HL) χ2HL = 9.33, p-value = 0.3153 χ2HL = 10.466, p-value = 0.3356

Discrimination (C-statistic) C = 0.726 C = 0.718
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overestimate was 0.70% (64 more cases) for females and
0.66% (39 more cases) for males (Figure 1). The distribu-
tion of predicted risk has a narrower range relative to
the observed distributions and this influences the right
side of the distribution. For example, when systematic
error was 0 and ICC was 0.6, the 10-year diabetes risk in
females ranges from 0.04% to 33.49% with a 90th per-
centile equal to 7.0%. In contrast, the distribution based
on the true BMI values ranges from 0.01% to 31.98%
with a 90th percentile equal to 6.85%.
When random error was assumed to be absent, the

calibration cutoff (χ2H-L < 20) was achieved 97% of the
time. With increasing levels of random error, the pro-
portion of simulations where the calibration cutoff was
achieved decreased steadily. Overall, ICCs of approxi-
mately 0.8 or higher resulted in the algorithm achieving
the calibration criteria at least 80% of the time. In both
males and females, errors in weight lead to larger
decreases in calibration than height, such that even a
perfect height measurement (ICC height = 1.0) would
fail to achieve the calibration cutoff if the ICC for weight
drops below 0.8. On the other hand, if ICC for weight
was 1.0, even if the ICC for height was 0.6, the algorithm
could still achieve calibration almost 80% of the time
(Figure 2).
Discrimination was decreased in the presence of ran-

dom error. Under the most severe measurement error,
the C-statistic was reduced from 0.69 (with no error) to
0.55 in males and from 0.72 (with no error) to 0.63 in
females. If the ICCs for height and weight were higher
than 0.8, then the differences in the C-statistic compared
to the estimate that had no random error were less than
0.02. As with calibration, error in weight had a bigger
impact on the C-statistic than errors in height
(Figure 3).
Under systematic error, the observed BMI on average

was higher or lower than the true BMI depending on the
nature of the directional error. For example, when
weight is underestimated by 3.0 kg then the observed
mean BMI +/− SD is equal to 24.47 +/− 4.51 compared
to the true BMI of 25.61 +/− 4.52, a difference of 1.15
kg/m2. As expected, underreporting of weight and over-
reporting of height resulted in an underestimate of pre-
dicted probability of developing diabetes. The average
level of systematic error found in the systematic review
was an underreporting of weight of 1.7 kg and an over-
reporting of height of 2.5 cm [29], and at these levels
risk would be underestimated by 0.86% (91 fewer cases)
in males and a 0.91% reduction (84 fewer cases) in
females (Figure 4). The presence of random error in
conjunction with systematic error slightly reduced the
amount of underestimation.
Overall, underreporting of weight of 1.5 kg or greater,

or overreporting of height of 1.5 cm or greater, resulted
in the failure of the algorithm achieving the benchmark
calibration value at least 80% of the time (Table 3). None
of the 500 simulations achieved calibration under the
maximum biases in reported height and weight in both
males and females (Figure 4). It must be noted that there
is no evidence from the literature that these extreme
biases are likely in self-reported height and weight; ra-
ther, they were investigated to illustrate the range of
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Figure 1 Difference in overall diabetes risk (observed – true) under random error in height and weight for males (N = 9,177) and
females (N = 10,618) averaged over 500 replications.
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results of under- and overreporting. The presence of
random error in conjunction with systematic error did
not significantly worsen or improve power to detect
calibration.
Under- or overreporting weight and height did not

have a significant effect on the discrimination of the
model (Figure 5). C-statistics were reduced very slightly
in the most extreme case of underreporting of weight or
overreporting of height (≤ 0.01 for both males and
females). When both random error and systematic error
were imposed, the C-statistic was reduced; however, this
was due to the influence of random error and not sys-
tematic error.

Discussion
This study systematically examined the impact of meas-
urement error in the context of a prediction algorithm.
This simulation study reveals several interesting aspects
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of the influence of measurement error (systematic and
random) on the performance of a risk algorithm.
As hypothesized, random error reduced calibration

and discrimination of the algorithm due to the fact that
the observed variance is greater than the true variance
in the presence of measurement error. The observed
BMI distribution was wider than the true distribution
due to this increased variation. This affects both dia-
betics and nondiabetics due to its random nature,
resulting in greater overlap between the BMI distribu-
tions. Ultimately, this makes assigning risk according to
BMI levels more difficult to achieve. Even though ran-
dom error in height and weight should, on average, cor-
rectly estimate the true BMI in the population (since it
does not skew the mean in a particular direction), it can
still influence the performance of a prediction model
due to decreased precision, which leads to greater dis-
persion in the BMI distribution.
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Figure 3 Average C-statistic for 500 replications under random error in height and weight for males (N = 9,177) and females (N =
10,618) indicated by the Interclass Correlation Coefficient (ICC) averaged over 500 simulations.
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In this study, systematic error in height and weight
biased the predicted risk estimates in the direction of
the error. This affects calibration, which is not surprising
since the concordance of observed and predicted events
would be influenced by the under- or overreporting of
the BMI level. In other words, persons that are over- or
underreporting their weight will then be over- or under-
estimated by the risk model and thus result in disagree-
ment with observed estimates. Systematic error did not
influence the ability to rank order subjects. Therefore,
the ability to discriminate between who will and will not
develop diabetes was not affected by systematic error
when variance due to random error is held constant.
This was reflected by the stability of the C-statistic
under varying degrees of systematic error. The way that
the systematic error was examined in this study was
such that the distribution of BMI was shifted to the left
(as a result of underestimating weight or overestimating
height, or both) compared to the true distribution. This
is an overall effect, and the decreased precision or
increased variability as seen with random error is
therefore not observed. Even though the distribution is
shifted to the left, those with higher BMI still have a
higher probability of developing diabetes compared to
those with lower BMI despite the fact that the absolute
levels of risk will be underestimated in both groups. This
is a classic example of how discrimination and calibra-
tion are often discordant. Due to the nature of probabil-
ity, it is possible for a prediction algorithm to exhibit
perfect discrimination, i.e., it can perfectly resolve a
population into those who will and will not experience
the event, and at the same time have deficient accuracy
(meaning that the predicted probability of developing
diabetes does not agree with the true probability) [30].
This study did not impose systematic error with respect
to disease status, but it could be hypothesized that if the
systematic error were differential between diabetics and
nondiabetics that this could indeed affect discrimination.
The finding that random error resulted in the overall

predicted risk estimated to be biased upwards was
contradictory to the hypothesis that only systematic
error will bias the risk estimate. Random error increases



Table 3 Difference in overall diabetes risk (observed – true) and percent that achieved calibration (H-L χ2 <20) in 500
replications under systematic reporting error (bias) in height and weight for males (N=9,177) and females (10,618)

Males (N=9,177) Females (N=10,618)

Reporting bias Difference in diabetes
risk (observed - true)

Number of
diabetes
cases

Percent that
achieved

calibration*

Difference in diabetes
risk (observed - true)

Number of
diabetes
cases

Percent that
achieved
calibration

Underestimate of weight by

0.5 kg −0.23% 24 95.4% −0.22% 23 93.0%

1.0 kg −0.46% 49 87.2% −0.44% 47 80.2%

1.5 kg −0.69% 73 73.0% −0.67% 71 58.6%

2.0 kg −0.94% 100 49.0% −0.90% 95 32.2%

2.5 kg −1.18% 125 23.2% −1.13% 120 11.8%

3.0 kg −1.43% 152 7.4% −1.37% 145 2.0%

Overestimate of height by

0.5 cm −0.22% 23 95.4% −0.19% 20 93.4%

1.0 cm −0.45% 48 87.4% −0.38% 40 85.6%

1.5 cm −0.69% 73 75.0% −0.57% 61 69.4%

2.0 cm −0.92% 98 52.4% −0.77% 82 48.2%

2.5 cm −1.16% 123 25.8% −0.98% 104 25.8%

3.0 cm −1.41% 150 9.4% −1.19% 126 9.2%

*(H-L χ2 <20).
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Figure 4 Difference in overall risk (observed Î true) under both systematic error and random error in height and weight among males
(N = 9,177) averaged over 500 simulations.

Rosella et al. Population Health Metrics 2012, 10:20 Page 8 of 11
http://www.pophealthmetrics.com/content/10/1/20



Males Females

0.60 0.70 0.80

None

-0.5 kg

-1.0 kg

-1.5 kg

-2.0 kg

-2.5 kg

-3.0 kg

+0.5 cm

+1.0 cm

+1.5 cm

+2.0 cm

+2.5 cm

+3.0 cm

C-statistic

Bias

0.60 0.70 0.80

None

-0.5 kg

-1.0 kg

-1.5 kg

-2.0 kg

-2.5 kg

-3.0 kg

+0.5 cm

+1.0 cm

+1.5 cm

+2.0 cm

+2.5 cm

+3.0 cm

C-statistic

Bias

Figure 5 Average C-statistic for 500 replications under systematic reporting error (bias) in height and weight for males (N = 9,177) and
females (10,618) indicated by the Interclass Correlation Coefficient (ICC) averaged over 500 simulations.
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the variability of a measurement and increases the range
of predicted risk, which is bounded by 0 in the logistic
model. In a situation where the outcome probabilities
are very high, the skew would be expected to be in the
opposite direction. Not surprisingly, the error in pre-
dicted risk resulting from underreporting weight or
overreporting height is in the anticipated direction (i.e.,
if weight is underreported the observed risk will be
underestimated). Furthermore, the addition of random
error to this type of systematic error slightly reduced the
amount of underestimation because the random and sys-
tematic errors worked in opposite directions. In another
situation, random error could potentially augment the
error in predicted risk. Such would be the case if system-
atic error tended to result in an overestimate of risk.
This study shows that random error, which accounts

for 20% of the total observed variance (ICC of 0.8 or
higher), is unlikely to affect the performance or valid-
ation of a prediction model. Research shows that the
random error in height and weight reporting is unlikely
to exceed that amount [31]. Interestingly, the effects on
the predicted diabetes risk were relatively minor, even in
situations of high under- or overreporting of weight and
height. This is likely because BMI has such a strong rela-
tionship with diabetes such that increased risk is appar-
ent even with significant underestimation. The true
distributions of BMI in diabetics and nondiabetics are so
distinct that even in the presence of underreporting
these populations have dissimilar risk for developing dia-
betes. Had this misclassification affected a variable that
did not have such a strong relationship with the out-
come, the effect on predicted risk may have been more
severe. Furthermore, in this study systematic error in
self-reported height and weight was taken as an overall
effect in the population. If self-reporting error were sig-
nificantly more likely to occur in those who were more
likely to develop diabetes, then the impact of this bias
could be augmented.
This study focused on the overall trend of self-

reporting error seen in several validation studies, that is
an underestimation of weight and an overestimation of
height [29]; however, these patterns may also vary across
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subpopulations, such as gender and socioeconomic sta-
tus. Generally, women tend to underestimate weight
more so than men, and men tend to overestimate height
more so than women [31,32]. Socioeconomic status has
been shown to modify these associations such that those
of lower socioeconomic status may actually overestimate
their weight and/or underestimate their height [33,34].
These subgroups may also have differential diabetes risk
and the extent to which this error influences population
risk prediction is a topic of future research. In addition,
values from a given individual in the population may ex-
ceed the maximum values included in this study; how-
ever, the influence of this would be more relevant for
individual risk prediction tools versus for population
prediction.
There are several limitations to consider in the context

of this study. Conclusions drawn from this simulation
study will relate only to the scenarios simulated and may
not apply to all risk algorithm situations. Simulation
programs that reflect the specific study conditions to
which a study is applied must be created to make con-
clusions applicable. Another caution in interpreting the
findings of this study is that models examined in this ex-
ercise are simpler than complicated multivariate risk
algorithms encountered in practice. This simpler model
allows us to focus on the height and weight error, which
is the greatest potential source of error in DPoRT. It
should be noted that one of the assumptions of this
study is that the only sources of error are in self-
reported height and weight. Other sources of error, in-
cluding error in diabetes status and selection bias in the
survey or in sampling, are assumed to be absent.
This study provides novel information about the influ-

ence of measurement error in a risk prediction model.
By understanding the consequences of measurement
error on prediction and algorithm performance, efforts
can be made to correct for these errors and thus im-
prove the accuracy and validity of a risk algorithm. Fur-
ther, efforts must be made to understand the nature of
error in self-reporting measurements. Ongoing work to
improve the quality of measurements used in risk algo-
rithms will improve model performance. Researchers
developing and validating risk tools must be aware of
the presence of measurement error and its impact on
the performance of their risk tools.
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