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Abstract
Fay, Pfeiffer, Cronin, Le, and Feuer (Statistics in Medicine 2003; 22; 1837–1848) developed a formula
to calculate the age-conditional probability of developing a disease for the first time (ACPDvD) for
a hypothetical cohort. The novelty of the formula of Fay et al (2003) is that one need not know the
rates of first incidence of disease per person-years alive and disease-free, but may input the rates of
first incidence per person-years alive only. Similarly the formula uses rates of death from disease
and death from other causes per person-years alive. The rates per person-years alive are much
easier to estimate than per person-years alive and disease-free. Fay et al (2003) used simple
piecewise constant models for all three rate functions which have constant rates within each age
group. In this paper, we detail a method for estimating rate functions which does not have jumps
at the beginning of age groupings, and need not be constant within age groupings. We call this
method the mid-age group joinpoint (MAJ) model for the rates. The drawback of the MAJ model
is that numerical integration must be used to estimate the resulting ACPDvD. To increase
computational speed, we offer a piecewise approximation to the MAJ model, which we call the
piecewise mid-age group joinpoint (PMAJ) model. The PMAJ model for the rates input into the
formula for ACPDvD described in Fay et al (2003) is the current method used in the freely available
DevCan software made available by the National Cancer Institute.

Background
Fay, Pfeiffer, Cronin, Le, and Feuer [1] showed how to cal-
culate the age-conditional probabilities of developing a
disease (ACPDvD) from registry data. Throughout this
paper we use "cancer" as our disease of interest, but the
method applies to specific types of cancer as well as other
diseases where information is collected by population
based surveillance methods. Fay et al [1] provided a for-
mula (see equation 1 below) to calculate ACPDvD after
inputing the rate function by age of (1) first incidence of
cancer per person-years alive, (2) death from cancer per
person-years alive, and (3) death from other causes per

person-years alive. Fay et al [1] used a simple piecewise
constant model for the three rate functions, which have
constant rates within each age group.

Here we detail two more complicated models for the rates.
The first model is a segmented regression model or join-
point model for the rates, where the rate function is a
series of linear functions that join at the mid-points of the
age groups, and the rate function is constant before the
first mid-point and after the last "mid-point" (because the
last interval goes to infinity, the last "mid-point" is not
really a mid-point at all, see below). We will call this
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model the MAJ (mid-age group joinpoint) model for the
rates. In Figure 1 we show how both the piecewise con-
stant model and the mid-age group joinpoint model
apply to all invasive cancer incidence from the Surveil-
lance Epidemiology and End Results (SEER) program of
the U.S. National Cancer Institute in 1998–2000. Figure 1
uses the SEER 12 registries which cover about 14 percent
of the U.S. population, covering 5 states (Connecticut,
Hawaii, Iowa, New Mexico, Utah), 6 metropolitan areas
(Atlanta, Detroit, Los Angeles, San Francisco-Oakland,
San Jose-Monterey, Seattle-Puget Sound) and the Alaska
Native Registry (see [2]). Similar graphs showing the MAJ
model can be made for the other rates required in the cal-
culations, death from cancer and death from other causes
per person-years alive.

Notice that the MAJ model gives a more smoothly chang-
ing and probably a better modeled rate. The only place
where the MAJ model may not perform better than the
piecewise constant model is at peaks or valleys, where
there may be some bias. In Figure 1 we see that the
smoothness of the MAJ appears to produce more plausi-
ble estimates for ages 0 through 85 and from ages 90 and
above, and the only age group with a noteworthy bias
problem is 85 to 90. Thus, for almost all of the age range
the MAJ model is more plausible.

A problem with the mid-age group joinpoint model is that
it requires numeric integration for its calculation. The sec-
ond model uses a series of piecewise constant values to
approximate the mid-age group joinpoint model. We call
this second model the PMAJ (piecewise mid-age group
joinpoint) model. The PMAJ does not require numeric
integration, so it is much faster than the MAJ model. The
PMAJ model is a piecewise constant model that only dif-
fers from the piecewise constant model of Fay et al [1] in
that the pieces are smaller and the corresponding values of
the rates are motivated by the MAJ model. Starting with
version 5.0, the freely available DevCan software [3] uses
the PMAJ method. (There was a small calculation error in
versions 5.0 and 5.1 that has been corrected in version
5.2). DevCan calculates ACPDvD or age conditional prob-
ability of dying from a disease for U.S. cancer data or for
user supplied data.

The outline of this paper is as follows. The review and
overview section reviews the issues in estimating the age
conditional probability of developing disease from sur-
veillance data. This section includes a motivation for
using this type of statistic to describe population data. The
review and overview section additionally gives graphical
descriptions of the MAJ and PMAJ methods. The paper is
structured so that readers not interested in the details may
skip the next two sections and the appendix, which give
precise and notationally involved definitions of the MAJ

estimators. The examples and discussion section gives
examples of the estimator of ACPDvD using three differ-
ent methods for estimating the rates, the simple piecewise
constant method proposed in Fay et al [1], the MAJ
method, and the PMAJ method. In supplimental material
[see Additional file 1] we compare the PMAJ method with
the method of Wun, et al [4], since the latter method was
the method used in versions of the DevCan software
before version 5.0.

Review and overview
Consider a surveillance program like the SEER program of
the U.S. National Cancer Institute. This program attempts
to count every incidence of cancer within the catchment
area of the program. Because cancer is a disease in which
the rates of the disease are highly dependent on age, in
order to give interpretability to the counts within the SEER
registries, we must somehow account for the age distribu-
tion in the popoulation.

One simple and popular statistic is the age adjusted rate or
directly standardized rate (DSR). In the SEER Cancer Sta-
tistics Review [2] DSRs are used to compare different can-
cer sites, trends on specific cancer sites over time, and rates
by sex and race. The DSR is calculated by a simple
weighted sum of the age specific rates for each 5 year age
group, where the weights are proportional to the U.S.
2000 population. Thus, the DSR may be interpreted as the
rates adjusted as if all the populations being compared
had age distributions similar to the U.S. 2000 population.
The DSRs are useful for gaining an overall picture of how

SEER 12 all invasive cancer incidence rates, 1998–2000, all races, both sexes: Piecewise constant and mid-age joinpoint methodsFigure 1
SEER 12 all invasive cancer incidence rates, 1998–2000, all 
races, both sexes: Piecewise constant and mid-age joinpoint 
methods.
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the incidence and mortality of each cancer effects different
populations (e.g., different races, SEER population at dif-
ferent times), while controling for the effect of differing
age distributions between populations being compared. A
disadvantage of the DSR is that it is hard to relate to an
individual's risk. For example, Table I-4 of the SEER Can-
cer Statistics Review, 1975–2000 [2] states that the DSR
for breast cancer for females for the years 1996–2000 is
135 per 100,000 person-years. The average American
woman may wonder, how does that relate to my risk? Will
I be likely to get breast cancer in my lifetime? If I am 40
years old now, what is my risk of getting breast cancer in
the next 10 years given that I have survived to this old
without getting it? These questions are the motivation for
using the age conditional probability of developing dis-
ease (ACPDvD), and in order to estimate the ACPDvD for
female breast cancer, we require information not only
about the rate of female breast cancer but also about the
rates of dying from female breast cancer and dying from
other causes.

The ACPDvD uses cross-sectional incidence and mortality
rates to estimate the age-conditional probabilities of
developing disease in a hypothetical cohort in which we
assume the age specific rates do not change over time. This
gives a personal interpretation to the cross-sectional data,
allowing statements like the following: if the incidence
and mortality rates remain at their present values (as
observed in SEER 12, 1998–2000), then a female born
today would have a 13.5% chance of developing breast
cancer over her lifetime (see Table 2). We can also calcu-
late ACPDvD over intervals. For example, a female who
has reached 40 years old without developing breast cancer
has a 1.5% chance of developing breast cancer by the time
she is 50.

Calculation of the ACPDvD is somewhat complicated,
and we describe the complications in relation to the sim-
ple DSRs. Consider first the age specific incidence rates
which are used to calculate the DSRs. These rates simply
count the number of incident cases of a particular disease
(e.g., female breast cancer) within each age group and
divide by the total number of person-years estimated by
the population. For counts of a single year, the person-
years are estimated by the mid-year population of the
catchment area (for sex-specific cancers like prostate can-
cer or female breast cancer, we only use the population of
the appropriate sex). Note that the incident cases may
include individuals who have previously been diagnosed
with the cancer and have developed a new primary cancer.

For the ACPDvD for any specific disease we would like the
rate of first incidence per person-years alive and disease-
free. Thus, there are two difficulties, (1) the usual age spe-
cific incidence rates include persons with multiple

primary cancers, and (2) the denominators include per-
sons who have previously been diagnosed. Merrill and
Feuer [5] discuss both difficulties and adjust for them cre-
ating risk-adjusted cancer incidence rates. Merrill and
Feuer [5] study the effect of these adjustments for several
cancer sites. To handle the first difficulty, (similar to [5])
we can remove cases where we have a record of a previous
diagnosis of that particular type of cancer. Because the reg-
istries in SEER were not all begun at the same time, to
avoid bias the DevCan program only searches the records
for previous cancers back until the year when the last reg-
istry was added. This year is denoted the follow-back year.
(If the disease of interest is any malignant cancer, then the
difficulty is handled differently. Although at each cancer
record we do not record what specific types of cancers
were previously diagnosed for the person, we do know
whether any tumors were previously diagnosed. Thus, if
the disease of interest is any malignant cancer and if the
record states there was a previously diagnosed tumor,
then we assume that the previously diagnosed tumor was
malignant, and do not count that case as a first incidence.)
To handle the second difficulty, the additional person-
years in the denominator, Merrill and Feuer [5] adjust the
denominator by multiplying the age-specific population
by 1 minus an estimate of the prevalence of the disease in
the population. Merrill and Feuer [5] also estimate the
prevalence of medical procedures which remove individ-
uals from the at-risk population, such as hysterectomy
which removes the risk of uterine cancers.

In calculating the ACPDvD we use only first incident of
the disease of interest as in [5], but we correct for the
denominators in a different way using an assumption and
some mathematics from the theory of competing risks.
This second correction is detailed with precise mathemat-
ical notation in Fay et al [1]; here we give more heuristic
arguments.

In the following let the disease of interest be "cancer". The
ACPDvD between ages x and y, given alive and cancer-free
at age x, may be written as the fraction,

To calculate the numerator, we integrate over the proba-
bility that the first cancer occurred at exactly age a. In math
notation this probability is

where fc(a) is a probability function representing the
probability that the first cancer occurred at exactly age a.

Probability that the first cancer occurred between the agess of  and 
Probability alive and cancer-free at age 

x y

x
.

f a dacx

y ( )∫
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Table 1: Notation

Random Variables and Parameters

T = age at death T* = age at first cancer or death before cancer
J = type of death J* = type of event

(J = d) = death from cancer (J* = c) = first cancer
(J = o) = death from other causes (J* = o) = death before first cancer

λc(t) = rate at t for first cancer given alive
 = rate at t for first cancer given alive and cancer-free

λo(t) = rate at t for death before cancer given alive
 = rate at t for death before cancer given alive and cancer-free

λd(t) = rate at t for death from cancer given alive
λa(t) = rate at t for death given alive

 = rate at t for first cancer or death before first cancer given alive and cancer-free

Observations

Within the age interval, [ai, ai+1), and within the calendar interval of interest we observe...
ci = number of first cancer incident cases

 = estimate of person-years alive associated with j = c, d, o (DevCan uses the sum of 

mid-year populations during the calendar interval of interest)
di = number of cancer deaths
oi = number of other deaths

Table 2: Age Conditional Probability of Developing Different Types of Invasive Cancers (in Percent) from SEER 12, 1998–2000

Start Age End Age Model All Invasive
(Both Sexes)

Prostat(Male) Breast (Female) Acute Lymphocytic
Leukemia (Both Sexes)

0 20 Piecewise const 0.3158 0.0009 0.0015 0.0669
PMAJ, interval = .5 0.3260 0.0011 0.0021 0.0633

MAJ 0.3260 0.0011 0.0021 0.0633
0 50 Piecewise const 4.0690 0.2002 1.9188 0.0837

PMAJ, interval = .5 4.1657 0.2550 1.9492 0.0808
MAJ 4.1657 0.2550 1.9492 0.0808

40 50 Piecewise const 2.5260 0.2032 1.5131 0.0053
PMAJ, interval = .5 2.5976 0.2579 1.5169 0.0055

MAJ 2.5975 0.2579 1.5169 0.0055
0 Inf Piecewise const 42.0876 17.4952 13.6471 0.1154

PMAJ, interval = .5 41.7547 17.3375 13.5477 0.1121
MAJ 41.7574 17.3389 13.5485 0.1121

60 61 Piecewise const 1.2340 0.5989 0.3822 0.0009
PMAJ, interval = .5 1.0852 0.4946 0.3627 0.0009

MAJ 1.0852 0.4946 0.3627 0.0009
64 65 Piecewise const 1.2758 0.6131 0.3872 0.0009

PMAJ, interval = .5 1.4453 0.7440 0.4045 0.0010
MAJ 1.4453 0.7440 0.4045 0.0010

60 65 Piecewise const 6.0331 2.9128 1.8777 0.0042
PMAJ, interval = .5 6.0622 2.9492 1.8758 0.0044

MAJ 6.0622 2.9492 1.8759 0.0044

λc t* ( )
λo t* ( )

λa t* ( )

S t u du
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j j
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One key result described in Fay et al [1] is that fc(a) can be
written as the product of two functions,

λc(a) = the probability that the first cancer occurred at
exactly age a, given the individual is alive just before age a,
and

Sa(a-) = the probability that the individual is alive just
before age a.

The function λc(a) is known as a cause-specific hazard
function, and it is estimated by some function of the age-
specific rates, such as the piecewise constant model of Fay
et al [1] or the MAJ model introduced in this paper (see
Figure 1). Using standard results for continuous survival
data, we can write Sa(a-) as

where λa(u) ( = the probability that the individual died at
age u, given the individual is alive just before age u) is the
usual hazard function. We estimate λa(u) using some
function of the age-specific rates. Thus, the numerator can
be written as

If we use the MAJ for both hazard functions, then there is
no closed form solution. To see why this is so, note that
within the exponential, the integral of a piecewise linear
function is the sum of a series of quadratic functions, and
the overall integral has no closed form solution. This
problem motivates the piecewise mid-age joinpoint
(PMAJ) model, where we use a series of piecewise con-
stant functions to approximate the MAJ model. Figure 2
gives the PMAJ model together with the piecewise con-
stant model used by Fay et al [1] for 70 to 90 year olds
from the SEER 12, 1998–2000 rates for all invasive (first)
cancer incidence rates per person-years alive. Remember,
although both Figure 1 and Figure 2 plot incidence rates,
we additionally need similar rate functions for mortality
rates to calculate the ACPDvD.

Now consider the denominator of the ACPDvD, the prob-
ability of being alive and cancer-free at age x, denoted

. For reference, in Table 1 we give the notation. The

only change from the notation in Fay et al [1] is that we
use the subscript a to represent all causes of events instead

of a blank subscript. For example, we let S*(u) = .

Other notation in this paper is defined as it is introduced.
Fay et al [1] assumed that the risk of death from other

causes does not change if you have previously been diag-
nosed with cancer, then used the key result mentioned
above together with some algebra and calculus to derive
the denominator. Then the ACPDvD between the ages of
x and y given alive and cancer-free just before age x is

The details of the MAJ and the PMAJ models are given in
the next two sections.

Readers only interested in the practical ramifications of
the choice in models may skip to the examples and discus-
sion section.

Mid-age group joinpoint estimator
In Fay et al [1], the rates were estimated by a piecewise
constant model. Here we use a mid-age group joinpoint
(MAJ) model, where we draw lines connecting the mid-
points of the intervals except the first and last interval. The
first interval is constant until the midpoint, and the last
interval is constant after a nominal "midpoint". This
nominal "midpoint" is half the length of the previous age
interval from the beginning of the last interval, and would
be the midpoint if the last age interval was the same
length as the previous interval.

We introduce new notation for breaking up the ages. Fay
et al [1] used 0 = a0 <a1 < ··· <ak <ak+1 = ∞. Here we use a

S a u dua a
a

−( ) = − ( )



∫exp λ

0

λ λc a
a

x

y
a u du da( ) − ( )



∫∫ exp

0

S xa
* ( )

S ua
* ( )

SEER 12 all invasive cancer incidence rates, 1998–2000, all races, both sexes: Piecewise constant and PMAJ methodsFigure 2
SEER 12 all invasive cancer incidence rates, 1998–2000, all 
races, both sexes: Piecewise constant and PMAJ methods.
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joinpoint model with joins at the midpoints (and nomi-
nal midpoint),

Let

(The indices start at -1 so that the index values for the rate

estimators, , match up with the count notation of [1].)

The MAJ estimator for the rate of event j (for j = c, d, or o)
at ti (for i = 0,1,..., k) is

where ji is either ci, di, or oi as defined in Table 1. (Note that

, where  is the piecewise

constant function used in [1]). We define  and

. For j = a, MAJ estimator for the rate at ti is

Then for t ∈ [ti, ti+1) for i = 1,..., k, we define  as the

point on the line defined by connecting the points (ti, )

and (ti+1, ). In other words,

Where

and

Thus, αj,-1 =  and βj,-1 = 0, and similarly by taking limits

as tk+1 → ∞ then αj,k =  and βj,k = 0.

Now  for u ∈ [ti, ti+1) is

Note that (for � = 0,1,..., k)

so that for i = 0,1,...,k,

Also notice that (when u < ∞)

Therefore when u ∈ [ti, ti+1),

Let (x, y) be the estimator of A(x, y) using the MAJ

model. The two integrals we need to estimate for (x, y)
are of the type,

where in the numerator of (x, y) we need  (i.e., j = c

and h = a in equation 7), and in the denominator of (x,

y) we need . Suppose, without loss of generality, that
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where Rj,h(t�, v) (for � = - 1,0,1,2,..., i and v ≤ t�+1) is
defined implicitly (see the Appendix). Then,

Piecewise mid-age group joinpoint estimator
In the MAJ model we divided up the age line into k + 2
intervals. Here we define those intervals in both the ti
notation and the ai notation.

In the MAJ model the rates for the first and the last inter-
vals are represented by lines with zero slope, and the rates
for the ith interval (i = 1,...,k) for the jth rate type (j = a, c,

d, o) is a line defined by connecting the points (ti-1, )

and (ti, ) (see equations 2 and 3 for definition of ).

In the PMAJ model we divide the ith interval into mi equal
sized intervals, and use a piecewise constant estimate on
each of those mi intervals. One way to define mi is to chose
mi so that each equal sized interval is 1/2 year long. In
other words, mi = 2(ti - ti-1). This is the definition of mi that
we use for the DevCan software (starting with version 5.0,
see [3]), but all the following holds for arbitrary mi. In Fig-
ure 2 we show the PMAJ model with half-year intervals
and the piecewise constant model for the US all invasive
cancer mortality rates for ages 70 through 90 years.

Here are the details. Consider the hth (for h = 1,..., mi) of
the mi intervals within interval i (for i = 1,...,k) for rate type
j (for j = a, c, d, o). This interval is

For convenience we introduce new notation for the ends
of this interval, let

so that ti-1,0 = ti-1 and  = ti. At the beginning of this

interval the value of the rate is

(see equations 4 and 6 for definitions of αj,i-1 and βj,i-1).
Similarly at the end of this interval the rate is

For the PMAJ model we simply assume a constant rate
equal to the average of the beginning and the end values
of the rate over this interval. In other words, under the
PMAJ model for any t ∈ [ti-1,h-1,ti-1,h) we estimate the rate
with

Since the PMAJ model is a piecewise model, we can use
Appendix A of [1] to express the estimator of age condi-
tional probability of developing cancer. The only hard
part is correctly defining the starting and ending of each
piecewise interval. The ends of these intervals are

For convenience write these interval ends with only a sin-
gle index as
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where  and m0 = 1. In other words, t-1 = τ0

and for i = 0,1,..., k, then ti= τg(i) and ti,h = τg(i)+h, where

.

Now we can follow very similar notation to Appendix A of
[1]. We now repeat that Appendix with the modifications
to notation required for the PMAJ model. Let the estima-

tor of A(x,y) under the PMAJ model be denoted (x,y).
Let τi ≤ x <τi+1 and τj <y ≤ τj+1 for x <y,i ≤ j, and j ≤ M + 2.
For convenience we regroup the ages after inserting group
delimiters at x and y. Let the new delimiters be 0 = b0 ≤ b1

≤ b2 ≤ ··· ≤ bM+3 = ∞ where b0 = τ0,..., bi = τ i, bi+1 = x, bi+2 =
τ i+1,..., bj+1= τ j, bj+2 = y, bj+3 = τj+1,..., bM+3 = τM+1 = ∞. We let

and similarly  and

. In this notation, the proba-

bility of developing cancer by age y given survival until age
x is A(x, y) = A(bi+1, bj+2), and under the PMAJ model we
estimate it with

Because  or  may equal zero and b�+1 may

equal infinity, we let .

These integrals are

where the case λ = 0 and b�+1 = ∞ is one of the "impossi-
ble" hypothetical cohorts (see Section 3.1 of [1]). Thus,
we obtain,

Examples and discussion
In this section we explore several different methods for
estimating the rate functions, all using the formula of Fay
et al [1] (e.g., all using equation 1). This comparison
explores the differences between the piecewise constant
method proposed in Fay et al [1], the PMAJ method, and
the MAJ method. A different comparison emphasizing dif-
ferences between versions of the DevCan software is
described in the supplemental material [see Additional
file 1].

For all of the examples we use data from 1998–2000 [6].
The incidence data come from the Surveillance,
Epidemiology, and End Results (SEER) program of the
(U.S.) National Cancer Institute, and mortality data from
the (U.S.) National Center for Health Statistics. We use the
SEER 12 registries which cover about 14 percent of the
U.S. population. We only use the mortality data covering
the same area as the SEER 12 registries cover. Because the
SEER 12 registries have complete coverage only back
through 1992, we only look back in the database until
1992 to delete any incident case that had previously been
diagnosed with the cancer of interest. These incident cases
are deleted so that they are not counted when estimating
the counts of first cancer incidence (the ci values). The
mid-year population estimates (the ni values) come from
the sum U.S. Census estimates of mid-year populations
from 1998, 1999, and 2000 for the SEER 12 catchment
areas for the appropriate sex group (e.g., males for pros-
tate cancer).

In Table 2 we show the results for all invasive cancers and
acute lymphocytic leukemia for both sexes, prostate can-
cer for males, and breast cancer for females. We see the
PMAJ values approximate the MAJ values very well.

In conclusion, we have described several methods for esti-
mating rates for input into a formula to calculate ACP-
DvD, and we have shown that the PMAJ method provides
fast and reasonable estimators for the rates.

Appendix: Calculation of R function
Recall that Rj,h(t�, v) represents an integral with 4 param-
eters. We can write it as

To simplify notation substitute let t� = u and αj� = αj,βj� =
bj,αh� = ah, and βh� = bh.
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Thus,

Case 1: bj = 0 and bh = 0
For our application, whenever v → ∞ then bj = 0 and bh =
0, so this is an important special case.

When bj = 0 and bh = 0 and ah = 0 and we obtain

which goes to ∞ when v → ∞.

When bj = 0 and bh = 0 and ah ≠ 0 and we obtain

which goes to aj/ah when v → ∞.

Case 2: General Case with v < ∞
To calculate the integral, R(u, v, aj, bj, ah, bh) for finite v, we
can use an adaptive use of Romberg's algorithm for
numeric integration (we follow closely Lange [7], pp.
210–211).

Let

Divide the interval [u, v] into n equal subintervals of
length (v - u)/n, and let

Then limn→∞ Tn = R(u, v, aj, bj, ah, bh).

A more accurate approximation uses Romberg's
algorithm,

Let  be our estimate of R. The algorithm we use to calcu-

late  is as follows:

1. Choose n.

2. Calculate Tn.

3. Calculate T2n.

4. For i = 1 to Imax do:

• If  then let  and

stop.

• Otherwise calculate , and continue.

For example, one could use n = 100 and δ = 10-5 and Imax
= 100.

Additional material
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