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Abstract

Background: Sound public health policy on HIV/AIDS depends on accurate prevalence and incidence statistics for
the epidemic at both local and national levels. However, HIV statistics derived from epidemiological extrapolation
models and data sources have a number of limitations that may lead to under- or overestimation of the epidemic.
Thus, adjustment techniques need to be employed to correctly estimate the size of the HIV burden.

Methods: A multi-stage methodological approach is proposed to obtain HIV statistics at subnational levels by
combining nationally population-based and antenatal clinic HIV data.
The stages range from computing inverse probability weighting (IPW) for consenting to HIV testing, to HIV status
prediction modelling, to the recently developed Bayesian multivariate spatial models to jointly model and map
multiple HIV risks.
The 2010 Malawi Demographic and Health Survey (MDHS 2010) and the 2010 Malawi Antenatal Clinic (ANC 2010)
Sentinel HIV data were used for analyses. Gender, residence, employment, marital status, ethnicity, condom use, and
multiple sex partners were considered when estimating HIV prevalence.

Results: The observed MDHS 2010 HIV prevalence among people aged 15–49 years was 10.15 %, with 95 %
confidence interval (CI) of (9.66, 10.67 %). The ANC 2010 site HIV prevalence had a median of 10.63 %, with 95 % CI
ranging from 1.85–24.09 %. The MDHS 2010 prevalence was 10.61 % (9.9, 11.33 %) and 10.19 % (9.69, 10.71 %)
using the HIV weight and IPW, respectively. After predicting the HIV status for the non-tested subjects, the overall
MDHS 2010 HIV prevalence was 11.05 % (10.80, 11.30 %). Higher HIV prevalence rates were observed in the mostly
Southern districts, where poverty and population density levels are also comparatively high. The excess risk
attributable to ANC HIV was much larger in the central-eastern and northern parts of the country.

Conclusions: Inverse Probability Weighting combined with an appropriate HIV prediction model can be a useful
tool to correct for non-response to HIV testing, especially if the number of tested individuals is very minimal at
subnational levels. In populations where most know their HIV status, population-based HIV prevalence estimates
can be heavily biased. High-coverage antenatal clinics’ surveillance HIV data would then be the only important HIV
data information sources.
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Introduction
Robust design of public health policy responses to the HIV
epidemic depends on accurate estimates of HIV prevalence
at both local and national levels [1, 2]. Precise estimates of
HIV prevalence are important for a better understanding of
correlations between HIV status and geographical charac-
teristics, effective targeting of public health interventions
and resource allocation, as well as assessment of progress
made in controlling the epidemic [3]. According to Boerma
et al. [4], national population-based surveys for HIV pro-
vide more accurate information on HIV prevalence than
other data sources. However, these national surveys still
remain scarce in Africa as they are costly to implement [5].
Therefore, most countries in Africa, especially those

with a generalized epidemic, rely on ANC sentinel surveil-
lance systems to monitor trends and progress made
against the HIV epidemic [1–3]. ANC surveillance has
well-known and documented limitations and biases that
may lead to under- or overestimation of HIV prevalence
[1–3]. These limitations include an excess of sentinel
ANC sites in urban areas and other readily accessible loca-
tions; the exclusion of men; and a potential difference in
HIV prevalence between pregnant and non-pregnant
women, among others. Moreover, the ANC surveys repre-
sent only pregnant women, who by definition have been
sexually active and are of reproductive age, and women
with potentially HIV-associated infertility are not cap-
tured. Thus, a number of countries have started conduct-
ing nationally representative population-based surveys
that include HIV testing. For example, Demographic
and Health Surveys that include HIV testing have been
conducted in over 30 countries in Africa, Asia, Latin
America, and Eastern Europe [1, 3].
However, even nationally representative population sur-

veys suffer from possibly significant non-response [5]. For
instance, in the 2004 Malawi Demographic Health Survey,
30 % of women and 37 % of men in the HIV subsample
refused to consent to HIV testing (NSO, Malawi and ORC
Macro, 2005) [6]. Nonparticipation in an HIV test due to
absenteeism or refusal to be tested creates several associ-
ated biases. According to the 2012 nationally representative
household HIV survey in South Africa, only 67.5 % (28,997)
of eligible individuals consented to HIV testing, with Black
Africans, at 73.3 %, having the highest HIV testing response
among the four race groups [7]. One of the main reasons
for a subject to refuse HIV testing is their HIV status
knowledge [1]. In order to account for the effects of non-
response, HIV prevalence estimates could potentially be
corrected using statistical procedures as we describe below.
Nonetheless, nationally representative surveys are a marked
improvement as they provide superior estimates of HIV
prevalence if accompanied by high HIV testing uptake [1].
On the other hand, integrated demographic and epi-

demiological extrapolation and statistical models are used

to measure the HIV/AIDS epidemic. These have evolved
and become more sophisticated with increased quality
and abundance of underlying data sources [3]. Most of
these techniques use the available data, including ANC
HIV, mortality, and fertility data to estimate the size of the
HIV burden at both national and subnational levels. Most
national projections of HIV prevalence and incidence rates
in sub-Saharan Africa are derived from the Spectrum/Esti-
mation and Projection Package (EPP) software [8]. Some of
the models are local, such as the Actuarial Society of South
Africa (ASSA) AIDS and Demographic and the THEM-
BISA models [9]. These models have their own limitations
due to varying input variables such as population estimates,
HIV prevalence rates, number of patients on antiretroviral
drugs (ART), fertility and mortality rates, and assumptions
of underlying statistical models on mortality.
This paper proposes a multi-stage approach to obtain

optimal HIV statistics using population-based HIV surveys.
First, inverse probability weights (IPWs) are derived from
subject-level probabilities of accepting HIV testing based
on an appropriate HIV test response regression model.
Second, using the observed HIV status of the HIV-tested
sample, an HIV prediction model is determined. Third, the
HIV prediction equation is used to impute HIV status for
subjects who refused HIV testing and survey interviews.
Using various subject-level HIV weights (IPW and survey
response weights), weighted subnational estimates of HIV
prevalence are computed using all the subjects, some with
observed and some with imputed HIV status. Finally,
recently developed Bayesian multivariate spatial models are
used to obtain smoothed HIV prevalence maps at the ap-
propriate subnational level by combining population-based
and ANC HIV data sources.
As an application, we used the 2010 Malawi Demo-

graphic and Health Survey (MDHS 2010) and the 2010
Malawi ANC HIV data in the multivariate spatial analyses.
As in most sub-Saharan African countries, Malawi has been
monitoring HIV prevalence predominantly through ante-
natal clinic (ANC) sentinel surveillance [10]. We adopted
the conditional predictive ordinate (CPO), which is the
marginal posterior predictive density, for model validation
and accuracy. In particular, by accounting adequately for
non-response to HIV testing, we hope that the nationally
representative survey used in this study that includes HIV
testing will provide more accurate information on HIV
prevalence than sentinel ANC-based survey data, as advo-
cated by Boerma et al. [4].
Malawi is a country in sub-Saharan Africa (SSA), a region

heavily affected by the epidemic compared to other regions
anywhere else, with an estimated 22.4 million people living
with HIV [11]. Despite recent declines in HIV prevalence,
Malawi remains among the group of countries with the
largest HIV epidemics in the world. The country’s HIV
prevalence in adults (15–49 years) peaked at 15 % in 1998
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and began stabilizing, reaching 11.8 % in 2004 among 15-
to 49-year-olds (National Statistical Office (NSO) and ICF
Macro, 2004). At the same time, HIV seroprevalence
among ANC attendees increased significantly from 1985
to a maximum of 22.8 % in 1999. In 2001, ANC HIV
seroprevalence started declining from 16.9 %, reaching
10.6 % in 2010 [10].

Methodology
Statistical models

A. Correcting for HIV testing non-response

The first phase of this study is concerned with develop-
ing empirical models of individual HIV testing response
among those selected to provide blood samples. Since this
dependent variable is dichotomous, it is modeled using a
probit regression and estimated using maximum likelihood
techniques. Suppose there are I subnational geographical
areas covered by the survey and in each area ni subjects
were selected for HIV testing. Let HIV testing response be
defined as Yij = 1 if subject j in area i (j = 1, , ni;; i = 1, I)
consented to HIV testing and Yij = 0 otherwise. The HIV
testing response model is defined as

Pij ¼ Prob Y ij ¼ 1 Xij

�� � ¼ Φ a þ Xijβ
� �� ð1Þ

where Xij is a vector of individual and subnational char-
acteristics affecting the individual’s HIV testing response,
α and β are the constant and regression coefficient vec-
tors, respectively; and Φ denotes the standard normal
cumulative distribution function.
We account for non-response HIV testing by calculating

inverse probability weights (IPWs) using the probit model
on the pooled data [12]. In order to compute the IPW
estimator we estimate probit equations for HIV testing re-
sponse (Yij = 1) versus non-response (Yij = 0) from the sam-
ple of individuals who were selected to provide blood for
HIV testing, conditional on a set of characteristics Xij that
are measured for all HIV testing sampled individuals. This
relies on the selection of relevant observables and implies
that non-HIV testing response can be treated as ignorable
non-response, conditional on Xij [13]. Selection on the
observables requires that Xij contain variables that predict
HIV testing non-response. The covariate variables used in
the consent to HIV testing models include individual’s age,
gender, educational status, household wealth index, ethni-
city, religion, type of place of residence, and region [1, 7,
14, 24]. The probit equation for HIV testing response/non-
response is estimated for all HIV selected testing sample,
and the inverse of the fitted probabilities from this model,
1

P̂ ij

.
is then used to weight the HIV status data.

B. HIV status prediction model

In the next phase, we developed an HIV prediction
model using the observed and known HIV status from
the HIV consented and tested subjects. Assume that mi

subjects in subnational area i were HIV tested. Let the
tested individual’s HIV status be defined as Sij = 1 if
subject ij (j = 1, ,mi;; i = 1, I) tested positive for HIV
and Sij = 0 otherwise. The HIV status prediction model is
then defined similarly as

Qij ¼ ProbðSij ¼ 1jZijÞ ¼ Φðδ þ ZijγÞ ð2Þ

where Zij is a vector of individual and subnational char-
acteristics affecting the tested individual’s HIV status, δ
and γ are the constant and regression coefficient vectors,
respectively; and Φ denotes the standard normal cumu-
lative distribution function. For the subjects who were

not tested for HIV, predicted probabilities Q̂ij

� �
of HIV

status were estimated using estimated coefficients in (2).
Individual-level HIV status (observed or predicted using
(2)) are averaged at a desired subnational geographic level
to obtain the estimate of HIV prevalence rates. The indi-
vidual weights used would vary according to use of a) in-
verse probability weights for those who were selected for
HIV testing; b) individual interview weights for those who
were interviewed for the main survey but were not se-
lected for the HIV testing sample; and c) household
weights for those who were not interviewed and were not
in the HIV testing sample [5].

C. A joint spatial model for HIV prevalence

In terms of mapping, the aggregated and weighted
population-based HIV prevalence and the antenatal HIV
prevalence at the subnational level were used in a shared
spatial component. This model was originally developed
to map different diseases likely to have similar spatial dis-
tributions due to shared risk factors. The model has both
shared components and components specific to each dis-
ease of interest ([15]; [16, 17]). The shared spatial compo-
nent model was applied here to incorporate information
from both the DHS and ANC HIV data sources. For the
ecological model, we took logarithms of the two district-
level HIV prevalence rates and adopted an asymmetric
formulation of the shared component model – in particu-
lar, the asymmetric formulation of the shared spatial
component model:

logðDHSHIV iÞ ¼ θ1 þ βT1 Xi þ κui þ v1i ð3aÞ

logðANCHIV iÞ ¼ θ2 þ βT2 Xi þ ui
κ
þ wi þ v2i ð3bÞ

where θj is the overall HIV risk using DHS data (j = 1) and
ANC data (j = 2), Xj is an ecological covariate risk vector
with vector βj as the corresponding HIV-specific coefficient
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parameter vector; ui is the spatially structured shared effect
common to both HIV risks measured by DHS and ANC
HIV prevalence data; wi is the ANC structured spatial-
specific component, taken as a proxy for excess HIV risk
among pregnant women; and vji are the HIV source-
specific heterogeneous effects, capturing possible extra
variation not explained by terms included. Thus, the
shared-factor model (3) partitions the risk profile for the
two HIV sources into source-specific components and
shared spatial components. Parameter κ is included to
allow for differential gradient on the main shared spatial.
The ratio κ2 compares the risk of DHS HIV source to the
risk of ANC source associated with shared spatial compo-
nent. Ideally, in model (3) we could have split the shared
spatial components into unstructured and structured
effects or similarly the HIV source-specific components.
This seems overly complex and could lead to identifiability
problems, so we thought of minimizing the number of
random effects. We could have also included specific
components for DHS HIV, but such a symmetric formula-
tion can result in identifiability problems.
The statistical smoothing or shrinkage described here

could be fitted using frequentist methods, but these are
very cumbersome to implement. A number of researchers
have advocated Bayesian methods to carry out smoothing
of disease risks in spatial epidemiology ([15]; [18]). We
modeled both the shared and ANC-specific spatial compo-
nents using intrinsic conditional (Gaussian) auto-regression
(ICAR) models. For instance, ui is modeled as:

f ui uk ; k≠ij Þ∼Normal

X
k∈Θi

W ikukX
k∈Θi

W ik

;
λ2uX

k∈Θi
W ik

0
@

1
A

0
@

ð4Þ

where Θi is the set of areas adjacent to area i; Wik is the
weight reflecting spatial dependence between areas i and k
and λu

2 is the (conditional) structured variance. The most
common and simplest adjacent specification is to set
Wik = 1 if areas i and k are neighbors that share a com-
mon boundary and Wik = 0 otherwise. Thus, a CAR nor-
mal prior specifies the conditional distribution of each
area-specific effect, given all the neighboring effects, to be
a normal distribution with mean equal to the average of
spatial effect of its neighbors and variance inversely pro-
portional to the number of neighbors; the more neighbors
an area has, the greater the precision for that area effect.
This might also be reflected for population density, where
urban areas may have more neighbors than sparsely popu-
lated rural areas. Since we are using the CAR normal prior,
with sum-to-zero constraints on the random effect terms,
we assign flat normal priors on the overall intercept and
fixed-effect terms. The logarithm of the scaling parameters
log k is assigned a Normal 0; 5ð Þ prior distribution. All

precision parameters are assigned independent hyper-prior
Gamma 0:5; 0:0005ð Þ distributions. These prior specifica-
tions have been shown in spatial modeling literature to
provide plausible range for relative risk assumptions (see,
for example, Manda et al. [19]). Model evaluation and valid-
ation were done using the conditional predictive ordinate
(CPO) [20], which is the marginal posterior predictive
density. This is also known as leave-one-out validation,
where a large CPO indicates agreement between observa-
tions and the model.
The Bayesian estimation of the model parameters was

carried out by running three parallel Gibbs sampler chains
for 20,000 iterations from independent starting positions.
Using a combination of trace plots and formal convergence
diagnosis tools, satisfactory convergence was achieved by
5,000 iterations in each case. Posterior summaries were
based on a combined sample of the remaining 45,000 itera-
tions needed to complete the cycles. An abridged copy of
the WinBUGS code used for fitting the bivariate spatial
model is provided in the Appendix.

Data sources
The first data that were analyzed for this study were from
the Malawi Demographic and Health Survey (MDHS) of
2010 (MDHS 2010). This was a nationally representative
household survey that provided data for a wide range of
population, health, and nutrition indicators. Malawi is one
of only a few countries where a Demographic and Health
Survey has collected nationally representative HIV preva-
lence data (NSO, Malawi and ICF Macro, 2011). The
survey sampled a total of 27,000 households and involved
nearly 24,000 female and 7,000 male respondents. In every
third household, blood specimens were collected for HIV
testing from all women aged 15–49 and men aged 15–54
who consented to HIV testing. Both the weighting and the
prediction model as described above in the statistical
models are based on this dataset.
The second dataset, from a study conducted in Malawi

in 2010, concerned HIV prevalence among pregnant
women in Malawi. ANC HIV surveillance in Malawi has
been conducted every one to two years since 1994 using
a consistent methodology in the same population group.
For the 2010 ANC survey, a total of 23,788 pregnant
women were enrolled from 28 urban sites and 26 rural
sites distributed across the three regions of Malawi. This
was in line with the decentralization process, and as
such sufficient numbers were needed for HIV data to
assist in developing district-specific plans [21].
The mapping modeling was conducted at the district

level, the level of geographic aggregation at which primary
health care is conducted. There are currently a total of 28
administrative districts in Malawi. However, due to two
districts being so small, we combined them into the
original districts from which they separated around 2000.
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Two contextual variables were modeled at the district level:
i) the level of poverty [22], defined as the total annual per
capita consumption reported by a household, and ii) the
population density [23], defined as number of people per
square kilometer (used as a proxy for social mobility and
interactions, which fuels increased HIV and STI transmis-
sion rates) [19]. Each of these contextual covariates was
partitioned into fourths; this categorization enables effects
to be detected at the extremes of the range.

Results
The results for the response rates for households, individ-
uals, and HIV testing in the MDHS 2010 are shown dia-
grammatically in Fig. 1. A total of 27,307 households were
selected, and of these, 24,825 were successfully interviewed,
yielding a response rate of 98 %. Of the eligible 23,748 and
7,391 women and men (aged 15–49 years), 23,020 and

6,805 were interviewed, respectively. This resulted in 97
and 92 % response rates for women and men, respectively.
In the 1:3 households selected for HIV testing, 1,104 of the
7,391 selected men and 673 of the 8,174 selected women
did not consent to HIV testing, resulting in an overall 89 %
consent rate for HIV testing. However, this reduces to only
52 % of all interviewed adults.
Table 1 presents the coverage rates for HIV testing

and the estimated coefficients from fitting the probit re-
gression model to HIV testing response by sex, urban–
rural residence, region, and many other socioeconomic
factors. Females (92 %) rather than males (85 %) and
rural (89 %) rather than urban (85 %) residence are sig-
nificantly associated with higher rates of consenting to
HIV testing. Being employed in agriculture, skilled man-
ual labor, and other kinds of work have a significant
positive association with acceptance of HIV testing.

Eligible interviews

Male (7,783–392*) 7,391

Female 23,748

Total 31,139

Interviewed

Male 6,805

Female 23,020

Total 29,825

Not interviewed

Male 586

Female 728

Total 1,314

HIV sub-sample 

Male 7,391

Female 8,174

Total 15,565

HIV consent

Refused 1,777 [male = 1,104; female = 673]

Accepted 13,788 [male = 6,287; female = 7,501]

Total 15,565 [male = 7,391; female = 8,174]

HIV status

Negative 12,249

Positive 1,384

Total 13,633

Fig. 1 Total sample categories: males and females 15–49 years old *392 men were aged 50–54 and were consequently removed from this
analysis for comparative analyses between women and men in DHS and ANC
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Table 1 Distribution of subjects by HIV testing response, with corresponding coefficient estimates and 95 % confidence intervals
from the probit regression model among subjects selected for HIV testing, MDHS 2010

Sub-sample selected for HIV testing (%) Regression coefficients (95 % CI)

Tested Total Unadjusted Adjusted

Overall 13,788 (88.58) 15,565 (100) 1.23 (1.01; 1.45)

Gender

Male 6,287 (85.06) 7,391 (47.48) 0.0 0.0

Female 7,501 (91.77) 8,174 (52.52) 0.35 (0.30; 0.40) 0.25 (0.17; 0.32)

Age (years)

15–19 3,319 (87.73) 3,783 (24.30) 0.0 0.0

20–24 2,569 (88.65) 2,898 (18.62) 0.05 (−0.03; 0.13) −0.04 (−0.15; 0.08)

25–29 2,396 (89.07) 2,690 (17.28) 0.07 (−0.01; 0.15) −0.06 (−0.19; 0.08)

30–34 1,882 (87.25) 2,157 (13.86) −0.02 (−0.11; 0.06) −0.13 (−0.27; 0.01)

35–39 1,544 (89.40) 1,727 (11.10) 0.09 (−0.01; 0.18) 0.01 (−0.14; 0.16)

40–44 1,093 (89.96) 1,215 (7.81) 0.12 (0.01; 0.23) 0.01 (−0.15; 0.18)

45–49 985 (89.95) 1,095 (7.04) 0.12 (0.004; 0.231) −0.05 (−0.22; 0.12)

Residence

Urban 1,885 (84.83) 2,222 (14.28) 0.0 0.0

Rural 11,903 (89.21) 13,343 (85.72) 0.21 (0.14; 0.28) 0.16 (0.06; 0.26)

Education

No education 1,485 (87.71) 1,693 (10.88) 0.0 0.0

Primary 9,097 (89.21) 10,197 (65.51) 0.08 (−0.01; 0.16) 0.05 (−0.06; 0.16)

Secondary plus 3,172 (87.48) 3,626 (23.30) −0.01 (−0.10; 0.08) 0.07 (−0.06; 0.21)

Missing 34 (69.39) 49 (0.31) −0.65 (−1.03; −0.28) 0.04 (−0.58; 0.66)

Employment

Not working 2,780 (92.67) 3,000 (20.39) 0.0 0.0

Professional/tech/manag 297 (90.83) 327 (2.22) −0.12 (−0.32; 0.08) −0.01 (−0.23; 0.21)

Sales 1,708 (91.88) 1,859 (12.63) −0.05 (−0.16; 0.05) −0.01 (−0.12; 0.10)

Agriculture 6,244 (93.88) 6,651 (45.20) 0.09 (0.01; 0.18) 0.11 (0.02; 0.20)

Skilled manual 1,249 (92.93) 1,344 (9.13) 0.02 (−0.10; 0.14) 0.14 (0.01; 0.27)

Others 1,433 (93.36) 1,535 (10.43) 0.05 (−0.07; 0.17) 0.14 (0.01; 0.26)

Marital status

Married 8,530 (89.72) 9,507 (61.08) 0.0 0.0

Divorced 865 (90.39) 957 (6.15) 0.04 (−0.08; 0.15) −0.04 (−0.17; 0.10)

Widowed 306 (91.07) 336 (2.16) 0.08 (−0.11; 0.27) −0.10 (−031; 0.12)

Single 3,965 (85.79) 4,622 (29.69) −0.20 (−0.25; −0.14) −0.04 (−0.15; 0.07)

Missing 122 (85.31) 143 (0.92) −0.22 (−0.47; 0.04) 0.13 (−0.23; 0.50)

Wealth

Poorest 2,391 (87.78) 2,724 (17.50) 0.0 0.0

Poorer 2,805 (89.47) 3,135 (20.14) 0.09 (0.004; 0.173) 0.08 (−0.02; 0.19)

Middle 2,838 (89.95) 3,155 (20.27) 0.12 (0.03; 0.20) 0.06 (−0.04; 0.16)

Richer 2,907 (88.95) 3,268 (21.00) 0.06 (−0.02; 0.14) 0.07 (−0.03; 0.18)

Richest 2,847 (86.72) 3,283 (21.09) −0.05 (−0.13; 0.03) −0.003 (−0.12; 0.12)

Religion

Catholic 2,942 (94.51) 3,113 (21.15) 0.0 0.0

CCAP 2,218 (94.58) 2,345 (15.94) 0.01 (−0.10; 0.12) 0.03 (−0.08; 0.14)
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Other Christians and Muslims are significantly less likely
to accept HIV testing. Though increased level of educa-
tion leads to more acceptance of HIV testing, it was not
significant. Other marital status categories were nega-
tively associated with HIV testing compared to being
single, but again not significantly. No clear pattern
emerged for age and household wealth. The distribution

of HIV testing refusal rates is shown in Fig. 2, where
higher refusal rates of HIV testing were observed in the
southeastern and in most northern parts of the country.
The adjusted coefficients in Table 1 were used to derive
the inverse probability weighting as described earlier.
The final weights for all sampled subjects had a mean of
1.04 (IQR range 0.78-1.10), showing very few outlier
weights.

Table 1 Distribution of subjects by HIV testing response, with corresponding coefficient estimates and 95 % confidence intervals
from the probit regression model among subjects selected for HIV testing, MDHS 2010 (Continued)

Anglican 440 (93.62) 470 (3.19) −0.08 (−0.27; 0.12) −0.06 (−0.26; 0.13)

Seventh Day 1,025 (93.95) 1,091 (7.41) −0.05 (−0.19; 0.09) −0.03 (−0.17; 0.11)

Other Christian 5,411 (93.05) 5,815 (39.51) −0.12 (−0.21; −0.03) −0.13 (−0.22; −0.05)

Muslim 1,372 (88.01) 1,559 (10.59) −0.42 (−0.53; −0.32) −0.42 (−0.53; −0.30)

No religion 206 (93.21) 221 (1.50) −0.11 (−0.37; 0.16) −0.05 (−0.32; 0.22)

Missing 97 (95.10) 102 (0.69) 0.06 (−0.36; 0.47) 0.09 (−0.34; 0.52)

Fig. 2 DHS Refusal Rates to HIV Testing MAlawi, 2010

Table 2 District-level HIV prevalence from antenatal clinics
(ANCs) and nationally representative surveys, Malawi 2010

District ANC HIV DHS HIV

Balaka 11.58 (10.45 – 12.70) 14.14 (11.09 – 17.85)

Blantyre 17.49 (16.48 – 18.50) 15.96 (13.12 – 19.27)

Chiradzulu 20.26 (18.88 – 21.65) 16.47 (13.30 – 20.21)

Dowa 6.08 (5.26 – 6.90) 3.76 (2.29 – 6.13)

Nkhata Bay 11.14 (10.04 – 12.23) 10.18 (7.69 – 13.35)

Nkhotakota 7.30 (6.14 – 8.46) 5.21 (0.35 – 0.78)

Ntchisi 5.54 (4.74 – 6.34) 3.66 (2.21 – 6.01)

Salima 8.61 (7.63 – 9.59) 8.85 (6.06 – 12.75)

Rumphi 9.90 (8.88 – 10.93) 6.67 (0.47 – 9.46)

Mzimba 9.10 (8.38 – 9.82) 5.08 (3.26 – 7.84)

Kasungu 8.50 (7.34 - 9.66) 4.62 (0.31 - 6.80)

Mchinji 10.13 (9.09 – 11.17) 0.96 (7.09 – 12.96)

Lilongwe 11.90 (11.13 – 12.68) 9.35 (6.92 – 12.53)

Dedza 9.80 (8.60 – 11.00) 0.75 (5.33 – 10.51)

Ntcheu 8.80 (7.16 – 10.44) 12.16 (9.46 – 15.51)

Chikwawa 11.42 (10.15 – 12.70) 10.96 (7.70 – 15.37)

Nsanje 16.30 (14.65 – 17.95) 15.06 (11.71 – 19.15)

Thyolo 25.20 (23.33 – 27.07) 18.00 (14.42 – 22.22)

Mulanje 19.50 (18.13 – 20.88) 17.11 (13.89 – 20.89)

Phalombe 15.87 (14.78 – 16.96) 1.46 (11.67 – 18.08)

Machinga 14.27 (12.94 – 15.60) 14.34 (10.69 – 18.97)

Mangochi 10.89 (9.79 – 11.99) 10.01 (7.32 – 13.53)

Zomba 15.50 (14.35 – 16.66) 14.98 (11.84 – 18.77)

Karonga 11.50 (10.40 – 12.59) 9.82 (7.20 – 13.25)

Chitipa 7.97 (7.24 – 8.70) 3.17 (1.74 – 5.69.)

Mwanza/Neno 10.43 (9.49 – 11.38) 1.05 (8.11 – 13.36)
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Table 3 HIV prevalence, with corresponding coefficient estimates and 95 % confidence intervals from probit regression model
among subjects who accepted HIV testing, MDHS 2010

Frequencies for sub-sample with HIV results (%) Regression coefficients (95 % CI)

Negative – n (%) Positive – n (%) Total Unadjusted Adjusted

Overall 12,249 (89.84) 1,384 (10.16) 13,633 −2.05 (−2.31; −1.80)

Gender

Male 5,716 (92.06) 493 (7.94) 6,208 0.0 0.0

Female 6,533 (87.99) 892 (12.01) 7,425 0.24 (0.18; 0.29) 0.22 (0.14; 0.30)

Age (years)

15–19 3,217 (97.81) 72 (2.19) 3,289 0.0 0.0

20–24 2,413 (95.00) 127 (5.00) 2,540 0.37 (0.25; 0.50) 0.21 (0.04; 0.38)

25–29 2,131 (90.18) 232 (9.82) 2,363 0.72 (0.61; 0.84) 0.50 (0.33; 0.67)

30–34 1,575 (84.63) 286 (15.37) 1,861 1.00 (0.88; 1.11) 0.77 (0.60; 0.94)

35–39 1,223 (80.41) 298 (19.59) 1,521 1.16 (1.04; 1.28) 0.96 (0.78; 1.13)

40–44 876 (80.66) 210 (19.34) 1,086 1.15 (1.02; 1.28) 0.91 (0.72; 1.09)

45–49 814 (83.66) 159 (16.34) 973 1.04 (0.90; 1.17) 0.81 (0.62; 1.00)

Residence

Urban 1,545 (82.53) 327 (17.47) 1,872 0.0 0.0

Rural 10,704 (91.00) 1,058 (9.00) 11,761 −0.41 (−0.48; −0.33) −0.41 (−0.50; −0.32)

Education

No education 1,270 (86.81) 193 (13.19) 1,463 0.0 0.0

Primary 8,141 (90.46) 859 (9.54) 9,000 −0.19 (−0.28; −0.10) 0.07 (−0.03; 0.17)

Secondary plus 2,810 (89.58) 327 (10.42) 3,137 −0.14 (−0.24; −0.04) 0.11 (−0.02; 0.24)

Missing 28 (84.85) 5 (15.15) 33 0.09 (−0.44; 0.61) 0.23 (−0.37; 0.82)

Employment

Not working 2,571 (93.46) 180 (6.54) 2,751 0.0 0.0

Professional/tech/manag 236 (80.00) 59 (20.00) 295 0.67 (0.49; 0.85) 0.23 (0.02; 0.44)

Sales 1,426 (84.53) 261 (15.47) 1,687 0.49 (0.39; 0.60) 0.20 (0.07; 0.32)

Agriculture 5,672 (91.81) 506 (8.19) 6,178 0.12 (0.03; 0.20) −0.01 (−0.11; 0.10)

Skilled manual 1,070 (86.22) 171 (13.78) 1,241 0.42 (0.31; 0.53) 0.21 (0.07; 0.35)

Others 1,215 (85.62) 204 (14.38) 1,419 0.45 (0.34; 0.56) 0.20 (0.07; 0.33)

Marital status

Married 7,505 (89.01) 927 (10.99) 8,432 0.0 0.0

Divorced 648 (75.97) 205 (24.03) 853 0.52 (0.42; 0.62) 0.39 (0.25; 0.52)

Widowed 158 (52.15) 145 (47.85) 303 1.17 (1.03; 1.32) 0.83 (0.64; 1.01)

Single 3,824 (97.43) 101 (2.57) 3,925 −0.72 (−0.81; −0.63) −0.37 (−0.54; −0.19)

Missing 114 (95.00) 6 (5.00) 120 −0.42 (−0.80; −004) −0.09 (−0.59; 0.40)

Religion

Catholic 2,625 (90.39) 279 (9.61) 2,904 0.0 0.0

CCAP 2,018 (91.56) 186 (8.44) 2,204 −0.07 (−0.17; 0.03) −0.02 (−0.13; 0.10)

Anglican 385 (88.91) 48 (11.09) 433 0.08 (−0.09; 0.25) 0.14 (−0.06; 0.34)

Seventh Day 885 (87.71) 124 (12.29) 1,009 0.14 (0.03; 0.26) 0.06 (−0.08; 0.19)

Other Christian 4,796 (89.48) 564 (10.52) 5,360 0.05 (−0.03; 0.13) 0.05 (−0.04; 0.14)

Muslim 1,212 (88.66) 155 (11.34) 1,367 0.10 (−0.01; 0.20) −0.05 (−0.21; 0.12)

No religion 184 (92.00) 16 (8.00) 200 −0.10 (−0.36; 0.16) −0.21 (−0.52; 0.10)

Missing 85 (90.43) 9 (9.57) 94 −0.002 (−0.36; 0.35) 0.18 (−0.19; 0.56)
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The observed unweighted MDHS 2010 HIV preva-
lence was 10.15 %, with a 95 % confidence interval
(CI) of 9.66 to 10.67 %, while the weighted preva-
lence (using MDHS 2010 HIV response weight) was
10.61 % (9.9, 11.33 %). Using the inverse probability
weighting (IPW), the MDHS 2010 HIV prevalence
was 10.19 % (9.69 %, 10.71 %). On the other hand,
ANC 2010 IV prevalence per site had a median of
10.6 % (1.85 to 24.09 %). The district was chosen as
an appropriate level to depict the geographical dis-
tribution of the HIV prevalence. The distribution of
the MDHS 2010 sample (ages 15–49) and ANC
2010 attendees per district ranged from 413–877
and from 297 to 1,762, respectively. The specific
data source district-level HIV prevalence is shown in
Table 2. In most cases the specific HIV prevalence
confidence intervals overlap, meaning that the

estimates are not statistically different. The district-
level HIV prevalence for MDHS 2010 had mean and
median of 10.45 and 10.09 % and ranged from
3.16–18.00 %; for ANC 2010, district-level HIV
prevalence had a mean and median of 12.12 and
11.01 % and ranged from 5.54–25.2 %. This showed
great variation in HIV prevalence rates between the
districts, where some estimates were based on very
small sample sizes.
The observed MDHS 2010 HIV prevalence by

various characteristics of subjects who consented to
HIV testing is shown in Table 3, together with the
estimated probit regression coefficients for the HIV
status prediction model. A number of factors, such
as gender, residence, employment, marital status,
ethnicity, condom use, multiple sex partners, and
risky sex in the past 12 months, are significantly

Table 3 HIV prevalence, with corresponding coefficient estimates and 95 % confidence intervals from probit regression model
among subjects who accepted HIV testing, MDHS 2010 (Continued)

Ethnicity

Chewa 3,812 (93.55) 263 (6.45) 4,075 0.0 0.0

Tumbuka 1,269 (93.04) 95 (6.96) 1,364 0.04 (−0.08; 0.16) −0.07 (−0.20; 0.07)

Lomwe 1,921 (83.67) 375 (16.33) 2,296 0.54 (0.45; 0.62) 0.54 (0.44; 0.64)

Tonga 431 (89.98) 48 (10.02) 479 0.24 (0.07; 0.40) 0.16 (−0.03; 0.35)

Yao 1,193 (87.27) 174 (12.73) 1,367 0.38 (0.27; 0.48) 0.38 (0.23; 0.54)

Sena 673 (88.20) 90 (11.80) 763 0.33 (0.20; 0.46) 0.34 (0.19; 0.49)

Nkhonde 199 (91.71) 18 (8.29) 217 0.13 (−0.12; 0.38) −0.08 (−0.36; 0.21)

Ngoni 1,659 (89.24) 200 (10.76) 1,859 0.28 (0.18; 0.38) 0.21 (0.10; 0.32)

Mang’anja 311 (85.44) 53 (14.56) 364 0.46 (0.29; 0.63) 0.43 (0.24; 0.61)

Others 346 (88.72) 44 (11.28) 390 0.31 (0.13; 0.48) 0.21 (0.02; 0.41)

Missing 376 (94.71) 21 (5.29) 397 −0.10 (−0.31; 0.11) −0.23 (−0.47; 0.01)

Condom use

No 7,712 (90.20) 838 (9.80) 8,550 0.0 0.0

Yes 1,191 (82.02) 261 (17.98) 1,452 0.38 (0.29; 0.46) 0.59 (0.49; 0.69)

Missing 1,404 (84.63) 255 (15.37) 1,659 0.27 (0.19; 0.35) 0.17 (0.02; 0.32)

Age at first sex

Less than 15 2,037 (88.14) 274 (11.86) 2,311 0.0 0.0

15–19 6,082 (88.43) 796 (11.57) 6,878 −0.01 (−0.09; 0.06) −0.07 (−0.16; 0.01)

20 and above 1,754 (89.90) 197 (10.10) 1,951 −0.09 (−0.19; 0.01) −0.21 (−0.33; 0.10)

Missing 434 (83.30) 87 (16.70) 521 0.22 (0.07; 0.36) −0.01 (−0.17; 0.15)

Multiple sex partners

No 8,198 (89.08) 1,005 (10.92) 9,203 0.0 0.0

Yes 573 (86.17) 92 (13.83) 665 0.14 (0.02; 0.27) 0.27 (0.08; 0.47)

No sex past 12 months 1,536 (85.71) 256 (14.29) 1,792 0.16 (0.08; 0.24) 0.01 (−0.12; 0.14)

Risk sex in 12 months

No incl. no sex past 12 months 8,562 (88.20) 1,146 (11.80) 9,708 0.0 0.0

Yes 1,730 (89.31) 207 (10.69) 1,937 −0.06 (−0.14; 0.02) −0.05 (−0.22; 0.12)
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associated with HIV status. The discriminative abil-
ity of the resultant model had area under the re-
ceiver operating curve (AROC) of 0.7757, 95 % CI
(0.7680, 0.7833 %), which is deemed satisfactory.
After predicting HIV status for the non-tested
(31,139 - 13,633 = 17,406) subjects, and assigning
to all the subjects their differing weights as de-
scribed above, the overall HIV prevalence using all

the 31,139 subjects was estimated at 11.05 % (10.80,
11.30 %).
Maps in Fig. 3a-b show DHS unweighted and total

weighted (all 31,139 subjects) HIV prevalence, and the
antenatal HIV prevalence in Malawi 2010. There ap-
pear to be more districts, especially in the central
western district, where after adjustments the HIV
rates have increased. The distributions of the two
contextual factors are shown in Fig. 4a-b. Higher
MDHS 2010 HIV prevalence rates were observed in
the mostly southern districts, which mirrors the ANC
HIV that is mostly concentrated in the southeastern
districts. Poverty level is evenly spread, but southern
districts bear the most burden of poverty. The same
goes for population density. Thus districts with high
HIV prevalence have high levels of poverty and popu-
lation density.
We fitted univariate spatial models controlling for the

two contextual factors and both the structured and
unstructured district-level random spatial effects.
However, a bivariate spatial model using the shared-
component technique was more adequate than separate
spatial DHS and ANC HIV prevalence models. The re-
sults of the effects of the contextual factors from fitting
the smoothed risks using the bivariate shared model are
shown in Table 4. High population density areas were

Table 4 Estimated covariate effects with associated 95 %
credible intervals using the Bivariate Spatial Analysis: Malawi
2010

Characteristics DHS HIV ANC HIV

Poverty fourths

I (Lowest) 0.0 0.0

II 0.11 (−0.18, 0.40) 0.16 (−0.08, 0.39)

III 0.10 (−0.18, 0.36) 0.24 (0.01, 0.45)

IV (Highest) −0.00026 ( −0.31, 0.31) 0.17 (−0.09, 0.42)

Population density fourths

I (Lowest) 0.0 0.0

II −0.09 (−0.41, 0.26) −0.11 (−0.38, 0.16)

III 0.09 (−0.19, 0.38) −0.06 (−0.29, 0.18)

IV (Highest) 0.34 (0.02, 0.65) 0.37 (0.11, 0.63)

Fig. 3 a DHS unweighted HIV Prevalence (%): Malawi, 2010. b Observed + Imputed DHS HIV Prevalence (%): MAlawi, 2010. c Antenatal HIV
Prevalence (%): Malawi, 2010
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significantly associated with high HIV prevalence.
Increased district-level poverty was associated with
increased HIV rates, but this was not statistically
significant.
The covariate-adjusted smoothed maps of HIV

risk from fitting the bivariate spatial model are
shown in Fig. 5a-d. The estimated HIV-specific
components in Fig. 5a and b are generally similar
to the observed and weighted prevalence maps
(Fig. 3a-c), and clusters of high HIV-prevalent
districts are now more apparent. The estimates of
the effects of the shared component (which we
took to act as a surrogate for high HIV risky
behaviors) had a larger effect on HIV incidence in
the southern parts of the country around the high
population density and urban areas. The excess
risk attributable to ANC HIV was much larger in
the central-eastern and northern parts of the
country.

Conclusions
In this paper, we have proposed a novel approach
to estimating HIV prevalence using a nationally rep-
resentative population-based survey and antenatal
clinic sentinel survey. The methodology has used a
suite of techniques aimed at overcoming some non-
HIV testing response biases in national surveys and
the coverage limitations inherent in antenatal sur-
veys. In particular, our approach could prove very
useful where there is need to produce subnational
HIV prevalence estimates using national probability
and representative samples, which might not have
adequate numbers of tested individuals due to
refusals to consent to HIV testing. Even though a
nationally representative population-based survey re-
mains the best source of HIV data [4], its useful-
ness can be enhanced by correctly accounting for
non-response to HIV testing and by jointly model-
ing antenatal clinics’ HIV data, often the only

Fig. 4 a Contextual Factor: Incidence of Poverty-Level (%): Malawi,2011. b Contextual Factor Population Density Levels: Malawi, 2008
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Fig. 5 a Adjusted Smooth DHS HIV Prevalence (%): Malawi, 2010. b Adjusted Smooth ANC HIV Prevalence (%): MAlawi, 2010. c Shared HIV
Prevalence (%): Malawi, 2010. d Differential ANC HIV Prevalence (%): Malawi, 2010
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source of HIV prevalence. This has enriched the
amount of HIV data available to increase power
and precision of the estimates.
We have found that adjusting the observed national

HIV prevalence rates to account for those non-tested in-
dividuals resulted in rates slightly higher than the ob-
served prevalence. The adjusted national HIV prevalence
was estimated at 11.05 % (10.80, 11.30 %), while the
other estimates based on tested individuals were 10.61 %
(9.9, 11.33 %) and 10.19 % (9.69, 10.71 %) using the sur-
vey HIV weight and the inverse probability weighting
(IPW), respectively; the latter estimate was significantly
lower. These results are partially consistent with analyses
of effects of non-testing response to HIV prevalence es-
timates using similar DHS surveys with HIV testing;
these showed non-significant effect of non-HIV testing
on national HIV prevalence estimates [5, 6]. Our results
show a slight significant increase, confirming the hypoth-
esis that HIV testing refusals may have higher HIV preva-
lence. However, these results should be treated with
caution as they may depend on the type of adjustment
and prediction models and the set of socio-demographic
and behavioral characteristics included in the models. At
AROC of 0.78, our HIV prediction was thought to be very
satisfactory using in-sample validation.
A few studies have appeared in the literature

looking at assessing and accounting non-response
in estimating HIV prevalence in Malawi. Obare
[24] and Floyd et al. (2013) analyzed repeated HIV
serosurveys in rural Malawi and found that HIV
testing refusal rates were at 45 and 43 % for men
and women in subsequent surveys, respectively. As
outlined in Obare [24], a downward bias in the
HIV prevalence estimates can result from many
factors, including prior knowledge of HIV-positive
status, migration, spouses’/partners’ infidelity suspi-
cion, and worries about getting HIV/AIDS. In the
absence of true HIV estimate among non-tested
subjects, these conjectures are just indicative of the
down effect of nonresponse on the HIV prevalence
estimate. In some cases, researchers including
Obare [24] have investigated the impact of non-
response on HIV prevalence estimates by assuming
plausible prevalence rates among non-participants
where a significant downward bias was shown in
HIV estimates among individuals who were tested
in all repeated surveys. In the present study, how-
ever, we explicitly predicted HIV status for those
not tested, and the prediction model was deemed
very satisfactory.
A recent study by Zulu et al. [10] used Geo-

graphic Information Systems (GIS) software to map
HIV prevalence obtained from ANC surveys year by
year from 1995. Additionally, they used spatial

autocorrelation, clustering measures, and multiple
regression analyses of the 2010 ANC data. Five
socio-demographic, behavioral, sociobiological, and
geographic variables were found to be significantly
associated with HIV prevalence in multiple ordinary
least squares (OLS) regression analysis. Their spatial
variation at the district level was mapped in relation
to the spatial distribution of HIV hotspots, cold
spots, and spatial outliers.
A study that proposes a methodology with similar-

ities to what has been presented here can be found
in Ivaschenko and Lanjouw [2]. They also combined
HIV data from sentinel surveillance survey of 2001
with representative population-based HIV data from
2000. While we model both in joint mapping
models, they use the latter to weight the ANC data,
which is used to generate an HIV prediction model.
This model is then used to predict HIV status in
MDHS 2000 sampled individuals. It’s critical to note
that the MDHS 2000 did not include HIV testing at
all. The predicted HIV prevalence for the women in the
MDHS 2000 was then aggregated to the district-level
prevalence and compared to the observed HIV prevalence
at the same level obtained in MDHS 2004 as a check of
the validity and accuracy of the prediction HIV model.
Our approach improved on these three by combining
spatial smoothing techniques based on novel application
of multivariate spatial models, inverse probability weight-
ing, and HIV prediction model.
In conclusion, minimizing nonresponse is a major

challenge for all population-based surveys. As argued
in [24] and Floyd et al. [1], in populations where
most know their HIV status, population-based preva-
lence estimates can be heavily biased. In such situa-
tions, high-coverage antenatal clinics’ surveillance
HIV data are the only main sources. However, we
have shown that inverse probability weighting can
be used to correct for non-response to HIV testing,
especially if the number of tested individuals is very
minimal at the subnational level.

Appendix
WinBUGS Code
The WinBUGS code for the main model, involving
the bivariate district MDHS 2010 and ANC 2010
HIV prevalence rates, is provided here for reference.
The nodes adj, weights and num are a vector listing
the ID numbers of the adjacent areas for each
district; a vector of the same length as adj that
provides unnormalized weights associated with each
pair of districts, and a vector giving the number of
neighbors for each district. All the three can be
generated using the Adjacency Tool in GeoBUGS,
an add-on mapping tool to WinBUGS.
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