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Abstract

Non-communicable diseases are the leading global causes of mortality and morbidity. Growing pressures on health
services and on social care have led to increasing calls for a greater emphasis to be placed on prevention. In order
for decisionmakers to make informed judgements about how to best spend finite public health resources, they
must be able to quantify the anticipated costs, benefits, and opportunity costs of each prevention option available.
This review presents a taxonomy of epidemiological model structures and applies it to the economic evaluation of
public health interventions for non-communicable diseases. Through a novel discussion of the pros and cons of
model structures and examples of their application to public health interventions, it suggests that individual-level
models may be better than population-level models for estimating the effects of population heterogeneity.
Furthermore, model structures allowing for interactions between populations, their environment, and time are often
better suited to complex multifaceted interventions. Other influences on the choice of model structure include
time and available resources, and the availability and relevance of previously developed models. This review will
help guide modelers in the emerging field of public health economic modeling of non-communicable diseases.
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Introduction
Non-communicable diseases (NCDs) are the leading
causes of mortality and morbidity globally, with much of
this disease burden being preventable [1–3]. Health ser-
vices around the world are experiencing ever-increasing
demand that may be alleviated through placing a greater
emphasis on NCD prevention. For example, in 2014 the
National Health Service (NHS) in England announced
the need for a “radical upgrade in prevention and public
health” [4] and in 2005, the UK National Institute for
Health and Care Excellence (NICE) started a new initia-
tive to produce guidance on public health interventions,
including cost-effectiveness analyses [5]. As of January
2016, 59 public health guidelines had been published [6].

In order for decisionmakers to make informed choices
about how best to spend finite public health resources,
they need to be able to quantify the anticipated impact
of an intervention, its cost, the associated opportunity
cost, and the possible effect on inequalities. Decision-
makers then need to be able to directly compare two or
more public health policies. This is difficult using current
public health economic models due to differences in the
underlying modeling method used (from here on referred
to as the model structure), time horizon, epidemiological
parameters, and outcome and costing measures. There-
fore standardized processes are required for assessing and
modeling the cost, health impact, and possibly cost-
effectiveness of public health interventions affecting
NCDs. NICE and the NICE Decision Support Unit have
set out guidelines for public health economic modeling,
but these are broadly based on guidelines for health
technology assessments (HTAs) [7–9]. There are further
difficulties faced by NICE and public health modelers:
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firstly, the level of evidence required by health technology
assessments (randomized controlled trials) may not be
possible to achieve and using Bayesian methods may be a
robust and more appropriate approach to take [10, 11];
secondly, the topic addressed by the public health
guidance is commonly dictated by the needs of the deci-
sionmaker rather than on the availability of appropriate
data. As a result, NICE guidance often fails to sufficiently
address some of the specific challenges of modeling
economic evaluations of public health interventions
[12–19]. These are:

� long-term health impacts (e.g., the effects on
cardiovascular disease burden and health expenditure
of increasing the price of unhealthy foods may
manifest and persist for many years after the
intervention is introduced);

� wider societal costs and consequences (e.g., transport
policies to improve physical activity have social costs
and outcomes beyond health; and different social costs
and outcomes are relevant to different modeled
scenarios, for example, influencing alcohol use has an
important effect on crime whereas reducing stroke
incidence has a more important effect on social care);

� impact on inequalities (e.g., more deprived population
groups may respond differently to those who are less
deprived following a price increase on unhealthy food);

� multicomponent interventions (e.g., a policy
aimed at increasing physical activity may include
both additional bicycle lanes and subsidized gym
membership); and

� interactions within complex non-health sector sys-
tems (e.g., if simulating the effect of upgrading home
insulation to reduce winter deaths, it may be import-
ant to consider interactions with the housing sector,
energy sector, and social care).

Examples of models are used throughout this review
to highlight how different model structures cope with
one or more of these challenges.
The International Society for Pharmacoeconomics and

Outcomes Research-Society for Medical Decision Making
(ISPOR-SMDM) guidelines for modeling research present
a key set of papers and guidelines on best practice in
health care decision modeling [20]. These guidelines
also include how to approach model transparency and
evaluation, but these topics are not covered in our re-
view [21]. The ISPOR-SMDM guidelines, as with those
produced by NICE, are primarily focused on health
technology appraisals and do not address the specific
challenges of public health interventions. Squires out-
lines these problems in more detail and presents a
framework for developing public health economic
models (Fig. 1) [22].

Squires emphasizes that when using this framework, it
is important to adopt an iterative approach (represented
by the double-headed arrows and the arrows feeding back)
as in practice, the understanding of the problem to be
modeled will develop as the model is built. Decisions re-
garding model inputs, outputs, scope, and structure are
influenced by several processes and considerations. These
include understanding exactly what should be modeled,
views of stakeholders, data availability, and what other
models are currently available (where appropriate, the de-
velopment of new models should be avoided if existing
models can be used or adapted) [22].

A taxonomy of epidemiological modeling
structures for the economic evaluation of public
health interventions
Authors have previously developed taxonomies to help
modelers to decide on the most appropriate health eco-
nomic model structure, however, these are primarily aimed
at HTAs [19, 23, 24] and as discussed in the introduction,
are difficult to apply to public health interventions for
NCDs. In order to make Brennan’s taxonomy more rele-
vant to public health economic modeling, Squires adapted

Fig. 1 Squires’ conceptual modeling framework for public health
economic modeling. Reproduction of figure 7.3 in Squires, 2014
(with permission from the author) [22]. Legend: The figure describes
how to develop a public health economic model. Model development
should be an iterative process as new stakeholders and data are
identified, represented by the double-headed arrows
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it to include agent-based simulation [22, 24]. In this
paper we use Squires’ adapted version of Brennan
et al.’s taxonomy as a framework for discussing public
health economic modeling of NCDs. We add com-
parative risk assessment (CRA) models, which can
simultaneously model multiple disease processes and
risk factors without large increases in model complex-
ity, to the taxonomy (Table 1). In the descriptions of
model structures, we also include a discussion of how
microsimulation techniques and multistate life tables
can be a useful adjunct to some of the model struc-
tures in Table 1. We are aware that other model
combination models are possible, for example using
the outputs of a decision tree to parameterise a Markov
model [25]; however, these are not individual model
structures in themselves and all such combinations are
therefore not included in this review.
In Table 1, columns A to D divide models into popula-

tion- or individual-level, and separate model structures by
how they deal with random events, expected values, and
heterogeneous populations. Broadly speaking, by using
population-level model structures, population heterogen-
eity (differences between population subgroups; for ex-
ample, in terms of age, gender, or risk factors) can be
simulated by rerunning the model for different cohorts,
whereas individual-level model structures use multiple
samples of different types of people (see section: Use of
microsimulation with individual-level decision tree, com-
parative risk assessment, and Markov models). The ability
to incorporate randomness allows for Monte Carlo simu-
lations to estimate stochastic uncertainty (describing
the uncertainty in individual level models resulting
from two individuals being in the same situation but,
by chance, having different outcomes), and parametric
uncertainty (in either population- or individual-level
models and describing the uncertainty in the estimates

of model parameters) [26]. Rows 1–4 categorize
model structures by whether they allow for interac-
tions to occur between entities within the model and
between entities and the environment, and how the
model deals with time (untimed means the models do
not explicitly include a temporal component). Row 5
describes agent-based simulation modeling, which
allows for multiple interactions governed by rules af-
fecting individuals within the model, rather than
affecting the system, as is the case in rows 3 and
4. Table 2 summarizes the main advantages and dis-
advantages of the epidemiological modeling structures
discussed in this review.
This review presents an analysis of the pros and cons

of epidemiological modeling structures giving examples
of their application to the economic evaluation of public
health interventions for NCDs to guide modelers in the
field of public health economic modeling.

Description of model structures
Rows 1 and 2 – no interaction
Decision trees (row 1, columns A, B, C, and D)
Decision trees simulate possible decisions and outcomes
using branches to represent each potential event. Branch
points are usually described as nodes and can represent
a decision (i.e., whether or not a public health education
campaign takes place) or a chance event (i.e., develop-
ment of disease). The options at each chance node are
assumed to be mutually exclusive and the probability of
each option occurring needs to sum to one. Each branch
eventually ends with a terminal node against which the
associated morbidity and costs of that patient journey
can be attached [27]. In order to calculate the cost-
effectiveness of an intervention, the costs and morbidity
of each patient journey are multiplied by the probability

Table 1 Revised version of Brennan’s taxonomy of model structures [22, 24]

A B C D

Cohort/aggregate-level/counts Individual-level

Expected value, continuous
state, deterministic

Markovian, discrete
state, stochastic

Markovian, discrete state Non-Markovian,
discrete state

1 No interaction Untimed Decision tree rollback or
comparative risk assessment

Simulation decision
tree or comparative
risk assessment

Individual sampling model:
Simulated patient-level decision tree or
comparative risk assessment

2 Timed Markov model
(deterministic)

Simulation Markov
model

Individual sampling model:
Simulated patient-level Markov model

3 Interaction between
entity and environment

Discrete
time

System dynamics (finite
difference equations)

Discrete time Markov
chain model

Discrete-time individual
event history model

Discrete-time discrete
event simulation

4 Continuous
time

Systems dynamics (ordinary
differential equations)

Continuous time
Markov chain model

Continuous time
individual event history
model

Continuous-time
discrete event simulation

5 Interaction between heterogeneous
entities/spatial aspects important

x x x Agent-based simulation
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Table 2 Summary table of epidemiological modeling structures for the economic evaluation of non-communicable disease public health interventions

Corresponding section
of review and table 1

Modeling method Advantages Disadvantages Public health examples

Section: Decision trees Decision tree Can be easy to construct. No explicit time component. Comparing exercise referral schemes
with usual care to increase physical
activity [29].Relatively easy to interpret. Exponentially more complex with additional disease

states.

Table 1: A1, B1, C1, D1 Can be adapted for cohorts and individuals. No looping/recurring.

Poorly suited to complex scenarios.

Section: Comparative risk
assessment

Comparative risk
assessment

Can model multiple diseases and risk factors
simultaneously.

More complex to build than decision trees. Return on investment of workplace
interventions to improve physical
activity [32].

Can be used for individuals or cohorts. No explicit time component.

No looping/recurring.

Table 1: A1, B1, C1, D1 Unable to model interactions between individuals,
populations, or their environment.

Section: Markov models
without interaction

Markov models
without interaction

Relatively straightforward to construct and
to communicate.

The Markovian assumption-individuals have no
memory of (are independent of) previous disease states.

Investigating the cost effectiveness
of different smoking cessation
strategies using the Benefits of
Smoking Cessation on Outcomes
(BENESCO) model [33–35].

Can model populations or individuals.

Table 1: A2, B2, C2, D2 Has time component. Can only exist in one disease state.

Allows looping/recurring. Exponential increase in complexity with
increasing numbers of disease states.

Section: System dynamics
models

System dynamics
models

Allows for interactions between populations
and the environment.

Models populations rather than individuals. Modeling the effects of policies
aimed at increasing bicycle
commuting rather than travelling
by car [63].Table 1: A3, A4 Allows for feedback and recurring.

Section: Markov chain
models and individual-level
Markov models with
interaction

Markov chain models
and Markov individual
event history models

Can model individuals or populations. Markovian assumption still exists (although its
impact can be reduced-see main text).

A CDC model evaluating the
cost-effectiveness of different
diabetes prevention strategies
[58, 59].

Table 1: B3, B4, C3, C4 Allows for interaction between populations
or individuals within the model.

Becomes rapidly more complex with added
disease states.

Section: Discrete event
simulation

Discrete event
simulation

Allows for interaction between individuals
and between individuals, populations, and
their environment, governed by system rules.

Model structure can be difficult to communicate and
interpret.

Evaluating the cost-effectiveness
of screening programs [67].

Table 1: D3, D4 Computationally challenging both in terms of
designing the model and running it.Allows for modeling of complex scenarios.

Section: Agent-based
simulation

Agent-based
simulation

Allow for interactions within and between
individuals, populations, and the environment,
governed by rules applied to individuals.

More complex than discrete event simulation. The Archimedes model for
modeling the outcomes of
changing health care systems,
such as investigating diabetes
care [70].

Table 1: D5 Requires large computational power.

Allows for individuals to learn. Difficult to communicate and interpret model structure.

Allows modeling of complicated systems.
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Table 2 Summary table of epidemiological modeling structures for the economic evaluation of non-communicable disease public health interventions (Continued)

Table 1: adjunct to A1,
B1, C1, D1, A2, B2, C2, D2

Multistate life tables Can be used with comparative risk assessment
and decision tree models to add a time
component.

Assumes diseases are independent of each other. The Australian Assessing Cost
Effectiveness in Prevention
(ACE Prevention) project [74, 76].

Can be combined with Markov models to
increase the numbers of possible disease
states without exponentially increasing
model complexity.

Model limited by underlying model structure, for
example, if combined with a Markov model, the
Markovian assumption remains.

Table 1: adjunct to C1,
C2, C3, C4, D1, D2

Microsimulation Can be combined with decision tree,
comparative risk assessment, and Markov
models to make it easier to model
heterogeneous populations or multiple
disease states.

Data requirements and simulations can become
computationally challenging with complex models.

The NICE obesity health economic
model used by Trueman et al. to
estimate the cost-effectiveness of
primary care weight management
programs [83].

Model limited by underlying model structure, for
example, if combined with a Markov model, the
Markovian assumption remains.
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of that journey occurring, and then summed for each
intervention and compared.
Decision trees are one of the simpler model structures

available for public health economic modeling, and as
such they are transparent as well as relatively straightfor-
ward to construct and to analyze. Decision trees can
operate at the cohort level or at the individual level but do
not have any explicit time component, do not allow for
looping (recurring) of events, and do not accommodate
interactions between individuals or populations [24]. This
makes it particularly challenging to model long term
chronic conditions or relapses in disease without becom-
ing overly complicated [27].
Although often used by health economists, decision

trees are less commonly used in public health economic
models as they are particularly constrained by their lack
of a temporal component, which other model structures
can handle more efficiently [22, 28]. Trueman and
Anokye used a decision tree to model exercise referral
schemes (ERSs) for promoting physical activity in the UK
[29]. Alongside a cost-utility analysis, Trueman and
Anokye estimated the effects of ERSs on a variety of
health outcomes and work absenteeism using a cost-
consequence analysis. A cost-consequence analysis (CCA)
is a useful way to illustrate the potential impact of public
health interventions on wider society that may be relevant
to public health decision makers but are not amenable to
being quantified through standard measures of quality of
life (such as those used to calculate Quality Adjusted Life
Years [QALYs]). However, CCAs do not allow for compari-
sons across disease areas where some diseases include
wider societal costs and benefits, and other diseases do not.

Comparative risk assessment (row 1, columns A, B, C, and D)
CRA models have also been used for public health eco-
nomic modeling of NCDs [30–32]. These are commonly
aggregate-level models that use population-attributable
fractions to estimate how parameters describing the rela-
tionship between a risk factor and disease outcome
would change following an intervention. Individuals can
be simulated when combined with microsimulation
(see section: Use of microsimulation with individual-level
decision tree, comparative risk assessment, and Markov
models). CRA models do not allow for interactions but
can simulate the age- and sex-specific effect of an inter-
vention on multiple risk factors and disease processes sim-
ultaneously without becoming as complex as the
equivalent decision tree. Other population strata can be
simulated in the same way, thereby estimating the impact
on health inequalities. Furthermore, CRA models can be
adapted to include a time component (see section: Using
multistate life tables). Costs and morbidity associated with
each disease process can be used to compare total cost
and health outcomes with and without an intervention.

Examples including costs are the WHO Comparative
Risk Assessment project [30], a French model simulat-
ing changes to fruit and vegetable consumption [31],
and a US model by Trogdon et al. estimating the poten-
tial return on investment of workplace obesity interven-
tions [32]. Trogdon et al.’s model estimates some
outcomes and costs outside of the health sector by
capturing costs from the employer perspective. This ap-
proach of estimating wider societal costs and conse-
quences directly from the health outcome (such as lost
days at work as a result of sickness) can be applied to all
model structures discussed in this paper where data on
the societal outcomes and how they relate to the health
outcome are available.

Markov models without interaction (row 2, columns A, B, C,
and D)
In comparison to decision trees and CRA models, Markov
models are much more commonly used in public health
economic modeling of NCDs, and are able to simulate
more complex scenarios [28]. For example, a Markov
model may be used to model the cost-effectiveness of dif-
ferent smoking cessation methods incorporating multiple
disease outcomes, the probability of relapse, and outcomes
over different time horizons [33–35]. Markov models
simulate how a population or individual moves between
predefined health or disease states at a specific time inter-
val (for example, annually). This incorporates a time com-
ponent and allows for modeled populations to remain in a
health state from one time interval to the next, and to
loop back from a diseased state to a healthy state (recur),
all based on a given transition probability. The model can
then be run for either a predefined number of cycles
or, if using a population cohort, until the entire population
have reached a certain age or died. In this way, long-term
effects of interventions on disease outcomes can be
estimated. When computing cost-effectiveness from a
Markov model, each health state is assigned a meas-
ure of disease morbidity and cost. As the model runs
through cycles, the costs and morbidity (or utility)
can then be summed for the numbers of individuals
in each state for each time cycle.
Markov models can be relatively straightforward to

develop and to represent graphically, thereby making
them transparent to peer-reviewers and decisionmakers.
Furthermore, transitional tunnel states can be added to in-
crease complexity and make the model more realistic. For
example, in order to more accurately capture the in-
creased costs and morbidity associated with the first year
of having a heart attack compared to subsequent years, all
individuals who have a heart attack may spend one cycle
in a tunnel state with associated high morbidity and cost,
before having a 100 % probability of leaving that state.
Markov models have been commonly used in a range
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of different public health economic analyses of NCDs
in different settings and countries, for example the
Dutch Rijksinstituut voor Volksgezondheid en Milieu
(RIVM) Chronic Disease Model (CDM) [36–39], the
Benefits of Smoking Cessation on Outcomes (BENESCO)
model [33–35], the Australian Quit Benefits Model
[40, 41], the US Centers for Disease Control and Pre-
vention (CDC) Measurement of the Value of Exercise
(MOVE) model [42], the Australian Coronary Heart
Disease Prevention Model [43], the US Coronary Heart
Disease (CHD) Policy Model [44, 45], and bespoke models
for analyzing public health interventions internationally
[46], in the Netherlands [47], Switzerland [48], Finland
[49, 50], Germany [51], US [52, 53], UK [54, 55], and in
Australia [56, 57].
Markov models have some important assumptions.

Firstly, population-level models have no memory (the
Markovian assumption) meaning that the morbidity,
cost, and transition probabilities associated with a given
health state are the same irrespective of previous health
states or how long an individual has been in a health
state. This can, in part, be dealt with by using tunnel
states, as used by the Australian Quit Benefits Model
[40], or by using microsimulation (see section: Use of
microsimulation with individual-level decision tree, com-
parative risk assessment, and Markov models). Secondly,
individuals can also only exist in one state at a time.
This means that to add a new disease to a model that
can coexist with the previously modeled diseases, the
number of health states included in the model must
each time be exponentially increased (as new health
states are required for each disease combination). Further
complexity is introduced if trying to model a heteroge-
neous population where population subgroups have differ-
ent transition probabilities. This can be addressed by using
weighted average costs, disabilities, and transition probabil-
ities at the aggregate level. Alternatively, multiple cohorts,
each with different characteristics, can be run through the
model with cohort-specific transition parameters to give
results by population subgroup, which can also be useful
when estimating effects on inequalities; however, this adds
model complexity and run time. An example of using mul-
tiple Markov models to model a heterogeneous population
with multiple disease states is the US CDC diabetes pre-
vention model, discussed in more detail in section: Markov
chain models and individual-level Markov models with
interaction [58, 59].

Rows 3 and 4 - interaction allowed
System dynamics models (rows 3 and 4, column A)
System dynamics models allow for populations to interact
both with each other and with their environment. The
probabilities of events occurring in the model (the system)
change through feedback as the model runs, governed by

algebraic or differential equations [60]. Such a model can
be made increasingly complex as increasing numbers of
factors influencing the system are added (requiring in-
creasing amounts of data). This makes system dynamics
models better able to simulate interactions within com-
plex non-health sector systems, and to estimate effects of
multicomponent interventions than previously discussed
model structures. Costs can be applied to either the dis-
ease state, or to all factors within the model, and then cost
and health outcomes with and without the intervention
can be compared. System dynamics models can usually
be represented graphically, facilitating communication
of the model with stakeholders. Such models are well-
established for communicable diseases [61, 62] and are
increasingly being applied to NCD risk factors, such as
Macmillan et al. who used a system dynamics model to
explore the potential effect of different transport pol-
icies on bicycle commuting in Auckland, New Zealand
[63]. The authors not only estimated health outcomes,
but also the effect on air pollution, carbon emissions,
and fuel costs over a period of 40 years. In this way,
long-term health and economic impacts were estimated,
and some non-health outcomes were quantified. The au-
thors monetized the model’s outcomes and a cost-benefit
analysis was used to compare different policies. Through
monetizing non-health outcomes and assigning utilities to
health outcomes it would be possible to perform a cost-
effectiveness analysis using the same approach. A potential
limitation of system dynamics models is that the dynamic
element of the model (the rate of change of parameters
with time) is deterministic, although parametric uncer-
tainty can be modeled.

Markov chain models and individual-level Markov models
with interaction (rows 3 and 4, columns B and C)
In discrete or continuous time Markov chain models,
state transition probabilities can depend on (interact
with) the proportion of different populations in different
disease states, and on the time that has elapsed in the
model. These interactions are the key difference between
Markov chain models and those discussed in section:
Markov models without interaction, and provide the
model with some degree of memory, in part overcoming
the Markovian assumption. However, when simulating co-
horts using time-dependent transition factors, it is not pos-
sible to completely overcome this assumption because the
model cannot know how long different proportions of the
population in any given health states have been in that
state. By contrast, individual-level Markov models simulate
individuals separately (also called microsimulation, see
relevant section on microsimulation later in article), mak-
ing it possible to ”know” how long an individual has been
in each state and to alter transition probabilities as a func-
tion of time in a given state. The simulation may or may
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not retain “memory” of which states an individual has been
in previously. Markov chain and individual-level Markov
model structures with interaction are better able to cope
with system complexity than CRA and decision tree model
structures, however they are unable to explicitly model non-
health sector system interactions.
Examples of discrete time aggregate-level Markov

models allowing for interaction are a version of the
RIVM CDM (also cited in Markov models without inter-
action (row 2, columns A, B, C, and D) section) which
includes disease incidence parameters that depend on
time from smoking cessation [64], and the US CDC dia-
betes prevention model, described in detail in a technical
report by Hoerger et al. available from Herman et al. as
an online supplement [59]. In this cohort model, transi-
tion probabilities are dependent on time since diagnosis
of diabetes, as well as on levels of glycemia and hyper-
tension. Furthermore, the model simulates multiple dis-
ease processes simultaneously by allowing the cohort to
coexist in five different disease pathways which are
linked to the overall Markov model by bridge models
(see online supplement from Herman et al. for full de-
scription of the model) [59, 65]. Bridge models allow the
overall Markov model to collect accumulated data on
the number of events that have occurred, and keep track
of the proportion of the cohort remaining in each dis-
ease state in any given year and the proportion who have
left either through death or remission. Finally, Herman
et al. account for a heterogeneous population by simulat-
ing 560 different cohorts, each with individual state tran-
sition probabilities dependent on age, sex, race,
hypertension, cholesterol, and smoking status.

Discrete event simulation (rows 3 and 4, column D)
Discrete event simulation (DES) is an extremely flexible
modeling structure that simulates a system changing
over time with a sequence of discrete individual events
[66]. Rather than simulating populations or individuals
through states for a fixed length of time, multiple future
events are in competition and the model jumps to
whichever event occurs next based on predefined prob-
abilities. The occurrence of an event can directly lead to
a series of contemporaneous events, as well as affect the
probability of future events. The probability of a given
event occurring can also vary with time and be affected
by interactions between individuals, populations, and
their environment at each event. A set of system rules
and probabilities govern the behavior of the population
or individuals in a DES model, and these can be changed
based on the intervention being modeled. As each event
occurs, costs and utilities based on the event, consequence,
and time to event are estimated. However, due to the large
number of variables possible in DES and the need to simu-
late many individuals, models can be computationally slow

to run (particularly when estimating uncertainty) and re-
quire large quantities of data for each disease outcome.
Within public health economic modeling of NCDs, this
approach has been commonly adopted for evaluating
screening programs. [67] Along with other model struc-
tures that can simulate interactions between the population
being modeled and the environment, DES is well-equipped
for addressing interactions within complex systems.

Row 5 – interaction between heterogeneous entities/
special aspects important
Agent-based simulation (row 5, column D)
Agent-based simulation (ABS) has many similarities to
DES in that it allows for the probability of events occur-
ring within the system being modeled to change as a con-
sequence of interactions between individuals (agents),
between agents and the environment, and with time. ABS
is therefore also able to deal with the challenges of multi-
component interventions and interactions within complex
non-health sector systems. The difference, however, is that
ABS models apply rules to agents or groups of agents, and
responses depend on individual agent characteristics
which can change either over time or following interac-
tions with other agents or the environment. This is com-
pared to system-based rules found in DES [22, 68]. A
heterogeneous population of agents is therefore able to
”learn” over time and affect the system, which, as Squires
discusses, allows for more accurate representation of
spatial effects, such as social networks [22]. However, ABS
is again more complex than DES and can require consid-
erably more data to represent heterogeneous population
groups. Costs and morbidity can be applied to each event
and disease state in order to derive estimates of cost-
effectiveness of interventions that affect the behavior of
agents (other societal costs and outcomes could also be
estimated in a similar fashion). Population-level results
emerge from the aggregate of all agent-level results.
An example of ABS being used in public health economic

modeling of NCDs is the Archimedes Model [69, 70]. This
model was designed to simulate a wide range of interven-
tions modeling a whole suite of clinical outcomes through
changes to physiological risk factors. It is therefore a good
example of simulating multicomponent interventions. It al-
lows interactions between variables both within and be-
tween individuals, and with the system as a whole. As such,
it relies on a large amount of processing power and data.

Using multistate life tables and microsimulation
to increase model flexibility
Use of multistate life tables with decision tree,
comparative risk assessment, and Markov models with no
interaction (rows 1 and 2, columns A, B, C and D)
For the purposes of this review, multistate life tables are
defined as life tables that model an individual’s, or
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proportion of a population’s, probability of developing a
given disease at different ages and subsequent case fatal-
ity rates once the disease is acquired. These can simulate
multiple diseases simultaneously and can be used to add
a temporal component to decision tree or CRA models.
For each intervention scenario being analyzed, the deci-
sion tree or CRA model can be used to generate popula-
tion impact fractions to alter the multistate life table
disease incidence, case fatality, and overall mortality
rates. Rerunning the multistate life-table model then al-
lows scenarios to be compared over the number of years
in the life table allowing for long-term health effects and
economic impacts to be estimated.
In a similar way, multistate life tables can be used with

population or individual Markov models to simulate
multiple diseases without the need for large increases in
the number of disease states. To do this, proportions of
the population can coexist in more than one disease
state in the multistate life table and for each disease a
Markov model can simulate the probability of moving
between diseased and not diseased states (thereby per-
forming a similar function to bridge models, as dis-
cussed in section: in Markov chain models and
individual-level Markov models with interaction). These
properties usually assume that diseases are independent
of one another (for example, the probability of develop-
ing ischemic heart disease does not change with a con-
current diagnosis of cancer). Published examples
include the Australian Assessing Cost Effectiveness in
Prevention (ACE Prevention) program of research (which
estimates the effects of various interventions over the life-
time of the Australian population) [71–76], the WHO
PopMod model (which estimates effects over a 100-year
time period) [77, 78], and a New Zealand model estimat-
ing the effects of increasing tobacco taxation (which esti-
mates effects over the lifetime of the New Zealand
population) [79].

Use of microsimulation with individual-level decision tree,
comparative risk assessment, and Markov models (rows 1
and 2, columns C and D; and rows 3 and 4, column C)
In order to overcome the complexity of modeling multiple
diseases and heterogeneous populations in decision
tree, CRA, and Markov model structures, an alternative
approach is to use individual patient simulation models
(microsimulation). These allow for a population of hetero-
geneous individuals to move through the model based on
probabilities appropriate to their characteristics (such as
demographic factors or physiological characteristics). The
model is run at the individual level with all members, or
randomly selected members of a predefined population,
being simulated until either a prespecified outcome occurs
or a certain length of time has elapsed (e.g., death or
reaching age 100). Once completed, the individual results

can be aggregated to calculate a single population-level re-
sult or for percentile (or other) variations in results across
individuals to be reported (thereby also allowing reporting
of inequalities). Microsimulation is also particularly useful
when estimating population means of skewed effects
(such as the growth rates of different cancers when a
few may be very quick-growing and have different subse-
quent events compared to the majority being slow-
growing), and is very flexible at modeling interactions.
Model parameters can be changed for different scenario

analyses in the same way as with multistate life tables
see section: Use of multistate life tables with decision tree,
comparative risk assessment, and Markov models with no
interaction by using decision tree, CRA, or Markov
models. However, in microsimulation this is at the individ-
ual level and parameters are specific to the individual’s
characteristics (such as their age and gender). Drawbacks
of individual-level simulation are that they are computa-
tionally intense although modern computers and software
are increasingly able to cope with the many thousands of
iterations often computed. Examples of patient-level simu-
lation Markov models within public health economic
modeling of NCDs include the UK Health Forum model
[80], the World Health Organisation and Organisation for
Economic Co-operation and Development (OECD)
Chronic Disease Prevention (CDP) model [81, 82], and
the NICE Obesity Health Economic Model [83], as
well as examples from Australia [84], Korea [85], and
Sweden [86, 87].

Conclusions
In the context of an ever-increasing global burden of pre-
ventable NCDs, decisions need to be made as to how to
approach their prevention and management. Modeling
the cost-effectiveness of NCD-related public health inter-
ventions is an expanding academic field that is starting to
embrace more sophisticated modeling structures (see
Table 2 for a summary of model structures). Public health
economic modeling of NCDs has thus far primarily used
Markov models, with or without the use of life tables and
microsimulation, to investigate the health impacts of a
given intervention and its cost-effectiveness. However,
there is scope for more complex systems to be modeled
with a wider range of possible outcomes by using model
structures such as DES and ABS. Balancing transparency
and parsimony with complexity when developing such
models is crucial for model results to be readily inter-
preted and used by decisionmakers [24, 88–90].
We identify many NCD public health economic

models that, to a greater or lesser extent, address the
specific challenges of epidemiological, public health, and
economic modeling when compared to health technology
appraisals; namely assessing long-term health and economic
impacts, quantifying societal costs and consequences,
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identifying the potential impact on inequalities, simulating
multicomponent interventions, and simulating interactions
within complex non-health sector systems.
The solutions to these challenges presented in this re-

view are either specific to a given model structure, or
can be applied across all structures. Long-term health
and economic impacts are impossible to estimate using
cross-sectional model structures such as CRA and deci-
sion tree models structures. However, combining these
with a multistate life table can add a longitudinal compo-
nent to the model thereby enabling long-term outcomes
to be simulated [74, 78].
Wider societal costs and consequences (e.g., air pollution

or effects on employment) can be estimated using any
model structure. The challenge is less a problem of choos-
ing the appropriate epidemiological modeling structure,
but more an issue of identifying robust cost and non-
health data with which to parameterize the model; al-
though, some model structures are more adaptable than
others for estimating multiple non-health outcomes. For
example, if data are available it may be possible within any
model structure to estimate some of the effects on prod-
uctivity costs of an intervention directly from a model’s
health outcomes by inferring what may happen to work
absenteeism as a consequence of ill health [29]. It is less
easy to do this for non-health related outcomes such as ef-
fects on air pollution as a result of changes to traffic policy
and numbers of cyclists. Macmillan et al. do this using a
system dynamics model and relate air pollution (and its
cost) to part of the causal pathway (number of vehicles on
the road) between the intervention and health outcome
[63]. For outcomes that cannot be directly estimated from
a step on a model’s causal pathway or result from interac-
tions with other model outcomes (for example, if increased
air pollution affected weather patterns which in turn
affected cycling habits) then model structures allowing
for interactions are more appropriate.
The potential impact of a simulated intervention on

inequalities can also be estimated using any epidemio-
logical modeling structure by simulating population groups
of interest separately if using a cohort model (for example,
Blakely et al. estimated the effects of a tobacco tax by eth-
nic group in New Zealand using a multistate lifetable
model [79]) or aggregating results from the two or more
population groups of interest when using microsimulation
(such as that used by Feldman et al. when estimating the
effects of lifestyle interventions on different risk groups for
metabolic syndrome [87]). Estimating wider societal costs
and consequences is dependent on available data.
The challenge of multicomponent interventions can be

addressed both using epidemiological model structures
that do and do not allow for interaction. Without inter-
action, a model assumes that each component of a multi-
component intervention acts independently on a disease

outcome or risk factor. If interaction between multiple in-
terventions is necessary to simulate, then model structures
that allow interactions are required. Both for multicompo-
nent interventions and for simulating interactions within
complex non-health sector systems, microsimulation
models (such as ABS and DES) offer more flexibility than
population-level models.
However, it is important to note that when dealing

with any of these challenges, a model is only as good as
the data used to parameterize it and adding more com-
plexity may only serve to make the model more uncer-
tain and more difficult to communicate. As Whitty
discusses, a model that is simple, timely, and lays bare
its problems is far more useful to a policymaker than
one that is more detailed, more complicated, possibly
more accurate, but less interpretable and arrives after
the policy decision is made [90].
No one model identified in this review addresses all the

challenges of modeling economic evaluations of public
health interventions for NCDs, and the choice of which
epidemiological model structure to adopt will depend on
what is being modeled: the interventions being evaluated,
the outputs required, and the needs of the decisionmaker.
We therefore provide a revised version of Brennan et al.’s
taxonomy of model structures for the economic evalu-
ation of health technologies to act as a guide to modelers
in the field of public health economic modeling [24].
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