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Abstract

Background: The following minimal set of valid health domains for tracking the health of both clinical and general
populations has recently been proposed: 1) energy and drive functions, 2) emotional functions, 3) sensation of pain,
4) carrying out daily routine, 5) walking and moving around, and 6) remunerative employment. This study investigates
whether these domains can be integrated into a sound psychometric measure to adequately assess, compare, and
monitor the health of populations.

Methods: Data from waves 3 and 4 of the English Longitudinal Study of Ageing (ELSA) were analysed (N = 9779 and
11,050). From ELSA, 12 items operationalizing the six domains of the minimal generic set were identified. The Partial
Credit Model (PCM) was applied to create a health metric based on these items. The Item Response Theory (IRT) model
assumptions of unidimensionality, local independence, and monotonicity were evaluated, and Differential Item
Functioning (DIF) was examined for sex and age groups. The psychometric properties of: 1) internal consistency
reliability, 2) construct validity, and 3) sensitivity to change were evaluated to establish the final health metric.

Results: IRT model assumptions were found to be fulfilled. None of the items showed DIF by sex or age group. The
final health metric demonstrated sound psychometric properties.

Conclusions: The health metric developed in this study – based on the domains of the minimal generic set – proved
useful for a wide range of health comparisons, especially for different groups of persons, and both cross-sectionally and
over time. Monitoring health over time provides especially useful information for health care providers and health
policymakers and both in clinical settings and the general population. The developed health metric offers a wide range
of applications, including comparisons of levels of health among different groups in the general population, clinical
populations, and even populations within and across different countries.
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Background
Measuring the health of populations in a conceptually
and cross-culturally valid manner is important from
different perspectives. From the point of view of epide-
miologists, sound measurement of health is essential
both to estimate the overall burden of ill health in spe-
cific populations and to compare the relative impact of
specific health problems across different groups of popu-
lations at risk [1]. From the point of view of policy-
makers, it is essential to monitor the effectiveness of
health care [2] and, generally, to provide evidence for
setting goals, implementing, and monitoring public
health policy [3].
One frequently used approach to measure the health

of populations is to generate a composite score of overall
health, taking into consideration disease severity in
terms of the impact of health conditions on individuals.
In this approach, a set of meaningful domains of func-
tioning, such as walking, self-care, memory, and pain, is
selected and used to produce a score. This approach,
however, does not account for comparability per se. If
the domains of functioning included in studies and sur-
veys and the method of creating a corresponding com-
posite score vary largely, comparability is compromised.
A recently published psychometric study addresses

this challenge by using the International Classification of
Functioning, Disability and Health (ICF) [4]. A univer-
sally valid minimal set of domains of functioning to
track the health of both clinical and general populations
was proposed [5]. This “minimal generic set of domains
of functioning and health” includes six ICF domains: 1)
energy and drive functions, 2) emotional functions, 3)
sensation of pain, 4) carrying out daily routine, 5) mobil-
ity (including walking and moving around), and 6) remu-
nerative employment. These domains from the minimal
generic set are closely related to the World Health Sur-
vey (WHS) domains, which in addition contain cogni-
tion and vision [6, 7]. However, while the WHS domains
were developed to capture population health states and
to quantify health using the most parsimonious set of
domains that also intuitively match individual notions of
health and are used in general population survey instru-
ments, there have been no attempts outside of WHO to
investigate the relevance of this set of domains across
different populations, and, in particular, in the clinical
population [5]. In contrast, the minimal generic set was
developed taking both data from the general population
and from clinical populations into account [5].
This selection of domains does not constitute an in-

strument and these domains can be operationalized in
very different ways in different studies. Therefore, our
approach can be applied, a posteriori, to already existing
data in an ex post harmonization exercise across mul-
tiple data sources. Additionally, the inclusion of such a

generic set of domains in other data sources such as
electronic health records, and when overlapped with
population health surveys that contain these domains,
could allow the quantification of health in a given
population that spans the full spectrum from community
dwelling to patient populations. In comparison to
WHODAS 2.0, an instrument developed by WHO
applicable in both clinical and general population
settings, the minimal generic set does not only focus on
activities and participation domains, but also contains
body functions [8].
The authors understand this set as a starting point to

address the important challenge of achieving compar-
ability of data across studies and countries in health
measurement. They stress the necessity to confirm
whether this set can be used to develop a health metric
useful for assessing and comparing trends in population
health [5].
Furthermore, this generic set is very brief and made

up of domains of functioning addressed in questions
posed in most health and disability surveys, including
surveys in which no standardized questionnaire, like
WHODAS 2.0, has been used. It demonstrates that a
psychometrically sound metric with cardinal properties
can be constructed to monitor a health status over time
using existing data. A metric with cardinal properties
does not only register the presence or absence of change,
but also quantifies the extent of that change. Health in-
equalities and their extent could also be identified, as
well as the effects of non-fatal health outcomes on over-
all population health by aggregating individual levels
over the population.
This study aims to investigate whether data on the do-

mains of the minimal generic set can be integrated into
a psychometrically sound health metric. The specific
aims are to evaluate the 1) internal consistency reliabil-
ity, 2) construct validity, and 3) sensitivity to change of
this metric.

Methods
Data
Data from the English Longitudinal Study of Ageing
(ELSA) was used for the analysis. ELSA is a biannual,
longitudinal, and nationally representative survey that
focuses on adults aged 50 and over living in private
households in England [9]. More concretely, data from
waves 3 and 4 collected in 2006–2007 and 2008–2009
were analysed (N = 9779 and 11,050). Depending on the
requirements for each specific aim, the combined data,
wave-4 data, or the overlapping data (i.e., persons whose
data was available for both waves 3 and 4) were used.
From the ELSA survey, 22 questions were identified

that operationalize the six domains of the minimal gen-
eric set as presented in Additional file 1. For energy and
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drive functions, emotional functions, walking and
moving around, and remunerative employment, the
questions directly reflected the content of the respective
domains. Therefore, the original variables were used in
the analysis. For sensation of pain, the first question
(“often troubled with pain”) served as a filter for the
second (“severity of the pain”), which means that the
second question was only asked if the first was answered
“yes.” Therefore, these two questions were summarized
into one item with response options “not often troubled
with pain,” “mild,” “moderate,” and “severe” pain.
A different strategy was needed for the domain “carry-

ing out daily routine,” as the individual questions as
framed in the survey did not reflect that domain. There-
fore, two sum scores were created. One addresses activ-
ities of daily living (ADLs), including dressing, washing,
eating, getting in and out of bed, and using the toilet,
with values ranging from none to five limitations. The
other score sums up instrumental activities of daily liv-
ing (IADLs), including difficulty using a map, preparing
a hot meal, shopping for groceries, taking medications,
doing housework, and managing money, with values
ranging from none to six limitations.
The response options for these selected items were

coded or recoded with higher values consistently reflect-
ing worse health.

Analysis
Descriptive statistics
Descriptive statistics were used to characterize the study
population.

Development of the health metric
The Partial Credit Model (PCM) was applied to develop
a health metric [10, 11]. The PCM or Polytomous Rasch
Model is a unidimensional Item Response Theory (IRT)
model that can be applied to a set of ordinal, polyto-
mous items [12]. Based on the model, a latent scale is
defined on which both persons and items can be located.
For persons, their location is called “person ability,”
while for items, the terms “item location” or “item diffi-
culty” are used. In addition, item thresholds which indi-
cate the locations on the latent trait where the item best
discriminates between persons are available for each
item.
Before the PCM was applied, the model assumptions

evaluated were: unidimensionality, local independency,
and monotonicity.
Unidimensionality [13] was evaluated with bifactor

analysis [14–16], which assumes the presence of a single
general factor and multiple independent group factors. If
all items load high on the general factor score and the
factor loadings on the general factor score exceed those
of the group factors, an underlying unidimensional

latent trait can be assumed. The number of factors con-
sidered in the bifactor analysis was determined based on
permuted parallel analysis [17]. Bifactor analysis was
applied on the polychoric correlation matrix [18, 19],
which constitutes a measure of association between two
latent continuous variables underlying two measured or-
dinal variables.
Local independence [13] was examined based on the

residual correlations among items resulting from a
single-factor factor analysis [20]. The PCM was then
estimated with and without the flagged possible local
dependent items (residual correlations higher than 0.2)
to see if results were robust to questions’ dependencies
[21]. If the item thresholds fundamentally change when
considering local dependent items in the same model, all
but one of them must be excluded.
Monotonicity was studied for each item by examining

graphs of the item’s distribution conditional on mean
“rest-scores” [13] calculated for each person as the aver-
age raw score of all the remaining non-missing items. If
there is a consistent trend that persons with higher
mean “rest-scores” are more likely to have more
problems in the selected item, monotonicity can be
assumed. Items violating the monotonicity assumption
need to be excluded from the model.
After the evaluation of model assumptions, the PCM

was fitted. If thresholds were unordered, the response
options of the affected items were collapsed until all
thresholds were in the correct order.
To examine whether persons from different groups

with the same (latent) health level have a different prob-
ability of giving a certain response to an item, differential
item functioning (DIF) was tested for gender and age
groups (< = 64 and >64) using iterative hybrid ordinal
logistic regression with change in McFadden’s pseudo R-
squared measure (above 0.02) as a DIF criterion [22, 23].
Items showing DIF must be split into two separate items
for the two groups and the model is re-estimated.
To examine whether the items fitted the PCM,

(unweighted) outfit and (weighted) infit mean squares
were calculated [24]. Values close to 1 indicate good
item fit, while values “much” larger than 1 indicate
underfit (i.e., the observed data varies much more than
can be explained by the model, constituting a violation
to the model). Values “much” smaller than 1 indicate
overfit (i.e., the data varies much less than would be
expected based on the model, what is usually considered
acceptable) [11, 24]. In the literature, a range from 0.7 to
1.3 is generally accepted [24]. However, to better
interpret these mean square statistics, the expected
probabilities for responding above a certain threshold
were graphically compared to the observed response
frequencies for groups of persons with close ability
estimates.
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Finally, persons’ health levels were linearly trans-
formed into a health metric ranging from 0 (worst
health) to 100 (best health), which facilitates judging the
relevance of differences between groups, e.g., with and
without health conditions and change over time.
According to the specific aims of this study, for the

final health metric the following psychometric properties
were evaluated: 1) internal consistency reliability, 2)
construct validity, and 3) sensitivity to change.
Internal consistency reliability was assessed based on

different measures. For each item, the inter-item correl-
ation and the item-to-total correlation [25] were calcu-
lated using polychoric correlations. Cronbach’s alpha
[26], McDonald’s omega hierarchical, and McDonald’s
omega total [27] were used for the complete item set.
All these measures can range from 0 to 1, with higher
values indicating higher reliability.
Construct validity was assessed for wave-4 data based

on four different criteria [25]:
Convergent validity was analyzed based on the Spear-

man correlation of the health metric with other health-
related variables, like the general health question and a
question on long-standing limiting illnesses. A high
correlation indicates high convergent validity. Discrimin-
ant validity was analysed based on the Spearman correl-
ation of the health metric with variables, like life
satisfaction, the number of falls within the last year and
age that are not direct assessments of health levels. A
low correlation indicates high discriminant validity.
Concurrent validity was assessed based on a linear

additive model [28] which predicts the value on the
health metric based on sex, age, education, income, and
health conditions as independent variables. Age is mod-
eled in a flexible, non-parametric way using P-splines.
Concurrent validity can be judged as high if persons
with health conditions have a lower predicted level of
health compared to those without the respective health
conditions and persons with severe health conditions on
average have lower predicted health levels than those
with very mild health conditions. To objectively judge
the severity of the prototypical health conditions, the
disability weights estimated for 220 unique health states
within the Global Burden of Disease Study 2010 (GBD
2010) [29] served as a reference.
Predictive validity was analyzed based on predicting

mortality from 2008 to 2012. For this purpose, four
additive logit-models [28] were compared, each contain-
ing the covariates sex, age, education, income, and
health conditions (as above). Model 1 contains only
these independent variables. Model 2 also contains the
health metric, while model 3 additionally contains the
general-health question. Model 4 contains all the covari-
ates, as well as the general health question and the
health metric. Age and the health metric are modeled in

a flexible, non-parametric way using P-splines. For all
these models, different model-fit criteria are compared
based on: the adjusted R-square, the percentage of
explained deviance, and the Akaike information criterion
(AIC) [28]. If the inclusion of the health metric improves
model fit, this indicates predictive validity.
Sensitivity to change was evaluated for the subsample

on which data were available for both wave 3 and 4. A
linear additive model [28] was fitted with the value of
the health metric in wave 4 as a dependent variable and
incidence of health conditions since wave 3 as independ-
ent variables, while controlling for the value of the
health metric in wave 3 and additional covariates. If the
incidence of severe health conditions has a high negative
impact on the expected value of the health metric while
the incidence of less severe health conditions has a
smaller effect, the health metric shows high sensitivity to
change.
All analyses were performed with R version 2.15.2 [30].

Results
Descriptive statistics
Descriptive statistics of the study population are
provided in Table 1.

Development of the health metric
When testing the IRT model assumptions for the com-
bined dataset, permuted parallel analysis indicated the
presence of two factors. In the bifactor analysis, the gen-
eral factor accounted for 50.8 % of the variance. Its fac-
tor loadings (ranging from 0.55 to 0.85) exceeded those
of the group factors for all items, supporting the as-
sumption of unidimensionality. High residual correla-
tions were found for “feeling everything was an effort”
and “could not get going” in the domain “energy and
drive functions” and for feeling “depressed,” “sad,” or be-
ing “happy” in “emotional functions.” When keeping
only one of the local dependent variables for each do-
main (“feeling everything was an effort” and “de-
pressed”), sensitivity analyses showed similar thresholds
compared to the model with all items included (Pearson
correlation of 0.99), which indicates that all items can be
kept in the final model. Monotonicity was graphically
confirmed for all items.
When fitting the PCM onto the combined dataset, the

thresholds of four items were disordered and had to be
collapsed: for “pain” and “walking a quarter of a mile,”
“mild” and “moderate” problems were collapsed. For the
two scores on ADL and IADL, the response options
were collapsed into “no limitation,” “one or two limita-
tions,” and “three or more limitations.” None of the
items showed DIF by gender or age based on the
selected DIF criterion.
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All items reasonably fitted the PCM. As presented
in Additional file 2, the outfit and infit mean squares
were rather close to one for most of the items.
Furthermore, the curves in Additional file 3 confirm
that the observed response frequencies (for respond-
ing above a certain threshold) for groups of persons
with close ability estimates are quite close to the
expected probabilities, especially for items with mean
square statistics further away from 1. In most cases,
the curve of observed frequencies is steeper, which
corresponds to the definition of overfit.
The results for the final PCM are visualized in the

person-item map in Fig. 1. In the top part of the
figure, the distribution of persons’ health levels is
shown separately for wave 3 and wave 4. The pattern
of persons’ levels is quite similar in the two waves,
with values ranging from −4.33 to 4.21. Item
locations and item thresholds are presented in the
bottom part of the figure. Item locations range from
−0.85 to 1.17, while item thresholds range from
−3.43 to 1.58.
The items are well suited to differentiate between

persons’ levels in the medium range of health. They
do not, however, differentiate well between the large
proportion of very healthy persons (to the left) and
the small proportion of extremely unhealthy persons
(to the right).

Internal consistency reliability
Table 2 shows the results of internal consistency reliabil-
ity. The values of the different measures yield consistent
results when calculated for each of the two waves separ-
ately and for the combined dataset. Inter-item correl-
ation is high, but has high variability. Item-to-total
correlation is higher with less variation. Cronbach’s alpha
and McDonald’s omega total are quite close to 1. McDo-
nald’s omega hierarchical is lower (with values around
0.60), but of reasonable size [27]. Therefore, all values
indicate high internal consistency reliability.

Construct validity
The Spearman correlation of the health metric with gen-
eral health and long-standing illness is comparably high
(−0.64 and −0.59), indicating high convergent validity.
The Spearman correlation of the health metric with life
satisfaction is lower (−0.36) and lowest for the number
of falls (−0.25) and age (−0.23). These low correlations
with the health metric indicate high discriminant validity
since these items are not a direct measure of health sta-
tus. Boxplots visualizing the relationship of the health
metric with the five above-mentioned variables are pre-
sented in Additional file 4. The complete correlation
matrix is presented in Additional file 5.
The linear additive model with the health metric as a

dependent variable and sex, age, education, income, and

Table 1 Descriptive statistics of wave-3 and wave-4 data and their overlap

Wave 3 Wave 4 Overlap of wave 3 and
4 - wave 4 values

(N = 9779) (N = 11,050) (N = 7908)

Age: mean (median) 64.56 (63) 65.24 (64) 66.40 (65)

Gender: female (%) 0.56 0.55 0.57

Education: low (%) a – 0.42 0.42

Education: medium (%) a – 0.27 0.27

Education: high (%) a – 0.31 0.31

Income: low (%) b – 0.31 0.32

Income: medium (%) b – 0.33 0.33

Income: high (%) b – 0.36 0.35

General health c

w3: very good/w4: excellent (%) 0.26 0.13 0.12

w3: good/w4: very good (%) 0.43 0.29 0.29

w3: fair/w4: good (%) 0.24 0.32 0.33

w3: bad/w4: fair (%) 0.06 0.19 0.19

w3: very bad/w4: poor (%) 0.01 0.07 0.07
a The education division is from a level lower than “O-level” or equivalent (typically 0–11 years of schooling), qualified to a level lower than “A-level” or equivalent
(typically 12–13 years), and a higher qualification (typically >13 years)
b Income groups were formed by dividing equalised total income into three approximately equally sized groups based on the sample
c The response options for the general health question differed for the two waves, leading to a very different response pattern. “w3” and “w4” are abbreviations
for wave 3 and wave 4, respectively
– Information on education and income was incomplete for wave-3 data and is, therefore, not included in the table
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Fig. 1 Person-item map for the final PCM. The top part displays the distribution of persons’ health levels separately for wave 3 and wave 4. The
bottom part shows the item locations (bullets) and item thresholds (circles) for the 12 items. To facilitate the comparison of item thresholds with
persons’ abilities, the item thresholds are additionally plotted below the persons’ distributions (of wave 4) by small vertical lines

Table 2 Results on internal consistency reliability

Measure Wave 3 Wave 4 Waves 3 and 4 combined

Inter-item correlation: mean [min; max] 0.54 [0.23; 0.90] 0.53 [0.24; 0.92] 0.53 [0.25; 0.91]

Item-to-total correlation: mean [min; max] 0.76 [0.61; 0.84] 0.75 [0.59; 0.85] 0.75 [0.60; 0.84]

Cronbach’s alpha 0.93 0.93 0.93

McDonald’s omega hierarchical 0.60 0.61 0.61

McDonald’s omega total 0.96 0.95 0.96
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health conditions as independent variables indicates
high concurrent validity. Detailed results are pre-
sented in Table 3 and Fig. 2. As expected, all the
listed health conditions have a negative effect on the
health metric, with more severe health conditions,
such as lung disease, arthritis, heart failure, Parkin-
son's disease, and dementia, showing a larger nega-
tive effect. This ranking is, where comparison is
possible, in agreement with the disability weights
estimated for 220 unique health states used in GBD
2010 [29].
Figure 2 shows the nonlinear effect of age on the

health metric together with its 95 % confidence intervals.
From an age of 68 on, age has an increasingly negative
impact on health levels.

Predictive validity
Table 4 shows the results regarding the predictive valid-
ity of the health metric. For wave-4 data, four different
additive logit models predicting mortality are compared
based on three model-fit criteria. When comparing the
four models, all three criteria indicate higher model fit
for those models with the health metric included (higher
adjusted R-square, higher percentage of deviance ex-
plained, smaller AIC). This means that the health metric
has a higher predictive validity for mortality than the

Table 3 Results on concurrent validity – linear additive model
predicting the value of the health metric

Number Coefficient SE p-value

Intercept 73.61 0.44 <0.0001

Gender (female) −0.56 0.34 0.0965

Education (middle) 3.47 0.41 <0.0001

Education (high) 4.67 0.41 <0.0001

Income (middle) 2.08 0.40 <0.0001

Income (high) 5.43 0.42 <0.0001

Health conditions:

High cholesterol 3546 −0.58 0.36 0.1108

Heart attack 741 −1.25 0.86 0.1459

Heart murmur 423 −1.26 0.84 0.1336

High blood pressure 4214 −2.44 0.35 <0.0001

Abnormal heart rhythm 820 −2.97 0.63 <0.0001

Angina 885 −3.31 0.80 <0.0001

Asthma 1260 −3.35 0.51 <0.0001

Cancer 571 −3.45 0.72 <0.0001

Other heart disease 303 −3.97 1.02 <0.0001

Diabetes 1063 −6.36 0.56 <0.0001

Osteoporosis 753 −7.46 0.65 <0.0001

Stroke 481 −8.44 0.81 <0.0001

Psychiatric condition 971 −9.92 0.57 <0.0001

Lung disease 544 −11.06 0.76 <0.0001

Arthritis 3816 −11.09 0.35 <0.0001

Heart failure 65 −12.38 2.17 <0.0001

Parkinson’s disease 79 −19.20 1.98 <0.0001

Dementia 154 −19.44 1.65 <0.0001

Regression coefficients, standard errors (SE), and p-values resulting from the
linear additive model predicting the value of the health metric for wave-4
data. For the health conditions, the number of cases with the respective health
condition is additionally provided. Health conditions are sorted by increasing
effect. The nonlinear effect of age is shown in Fig. 2
The reference categories are male, low education, low income, and not having
the respective health condition
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Age

Fig. 2 Results on concurrent validity – nonlinear effect of age. The
nonlinear effect of age (solid line) and 95 % confidence intervals
(dashed lines) resulting from the linear additive model predicting
the value of the health metric for wave-4 data. As there are only a
small number of observations below the age of 50, there is a lot of
uncertainty in the estimation in this range

Table 4 Results on predictive validity – comparison of model-fit
criteria for four different models

Adjusted
R-square

Percentage
of deviance
explained

AIC

Model 1 including
only covariates

15.2 23.6 3362

Model 2 including covariates
and the health metric

17.5 26.2 3251

Model 3 including covariates
and the general health question

16.7 25.5 3285

Model 4 including covariates,
the general health question
and the health metric

17.9 26.6 3240

For wave-4 data, four different additive logit-models predicting mortality in
2008 to 2012 are compared based on three model-fit criteria: adjusted
R-square, percentage of deviance explained, and Akaike Information Criterion
(AIC). Covariates considered in all four models include sex, age, education,
income, and health conditions. To permit a fair comparison of criteria, the
same subset of data with complete responses in all the variables considered
over the four models was used. Where included, age and the health metric
are modeled in a flexible, non-parametric way using P-splines
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general health question and that it still has predictive
validity when added to the general health question.

Sensitivity to change
Table 5 and Additional file 6 show the results from
the linear additive model predicting the value of the
health metric in wave 4 based on the incidence of
health conditions within the last two years when
controlling for the value of the health metric in wave
3 and other covariates. Table 5 shows that the inci-
dence of any of these health conditions has a negative
effect on the value of the health metric. The inci-
dence of severe health conditions, often without

effective therapy and progressing rapidly, have a large
negative effect, while incidence of mild health condi-
tions or those with effective therapy have a smaller
negative impact. Therefore, these results indicate high
sensitivity to change. Additional file 6 shows the non-
linear effect of age from this model. However, age
was only used as a control variable here.

Discussion
In this study, we demonstrated that it is possible to de-
velop a psychometrically sound metric useful to track
and compare population health based on a recently pro-
posed minimal generic set of domains of functioning
valid in both the clinical and the general populations.
This metric showed high internal consistency reliability,
high construct validity, and high sensitivity to change.
This metric of health has a huge potential, as it contains
health domains usually included in health surveys cur-
rently conducted all over the world, which means that
our approach can be applied, a posteriori, to many
already existing surveys. Therefore, such a metric en-
ables health comparisons even for studies in which no
standardized instrument, like WHODAS 2.0, was, a
priori, included.
The applicability of the PCM on the data was exam-

ined in a rigorous manner. All three model assumptions
of IRT analysis, i.e., unidimensionality, local indepen-
dency, and monotonicity, were formally investigated and
found to be fulfilled. None of the items showed DIF by
gender or age groups, and all items reasonably fitted the
PCM.
The developed metric differentiated well between per-

sons in the medium range of health, but less precisely at
the lower and upper ends. Its creation constitutes a
trade-off between two conflicting aims: on the one hand,
maximal measurement precision is desired to permit
fine distinctions in persons’ health levels and to increase
its potential uses, both for group comparisons and com-
parisons over time. On the other hand, the metric
should be based on an extremely parsimonious set of
domains that can be integrated at low cost, both with
regards to financial resources and (interviewing) time,
into any already existing or newly developed survey or
questionnaire. Only if the metric is based on a frugal set
of domains will its domains be frequently implemented
in studies. This, in turn, constitutes the prerequisite for
the subsequent application of the metric for comparison
purposes. Therefore, loss in measurement precision, es-
pecially at the margins of the continuum, must be ac-
cepted for reasons of practicability. Also from a public
health perspective, a good differentiation in the middle
range of the continuum gains special relevance since
persons in that range of health are at risk of further de-
terioration, while little change in health state is expected

Table 5 Results on sensitivity to change – linear additive model
predicting the value of the health metric

Number Coefficient SE p-value

Intercept 18.98 0.65 <0.0001

Health metric in wave 3 0.71 0.01 <0.0001

Gender (female) −0.86 0.30 0.0047

Education (middle) 1.42 0.38 0.0002

Education (high) 1.22 0.38 0.0012

Income (middle) 0.86 0.37 0.0200

Income (high) 1.79 0.39 <0.0001

Incidence of:

High cholesterol 503 −0.57 0.61 0.3563

Angina 180 −0.73 1.00 0.4655

Heart attack 265 −0.94 0.83 0.2571

Osteoporosis 121 −1.17 1.21 0.3323

High blood pressure 325 −1.46 0.75 0.0502

Other heart disease 126 −1.94 1.19 0.1019

Abnormal heart rhythm 137 −2.27 1.15 0.0481

Asthma 91 −2.72 1,40 0.0514

Diabetes 138 −2.95 1.13 0.0093

Heart murmur 57 −3.06 1.73 0.0771

Arthritis 361 −4.06 0.71 <0.0001

Cancer 138 −4.15 1.12 0.0002

Stroke 91 −4.73 1.41 0.0008

Lung disease 91 −5.90 1.39 <0.0001

Parkinson’s disease 13 −6.51 3.56 0.0679

Psychiatric condition 110 −8.00 1.29 <0.0001

Heart failure 14 −9.62 3.90 0.0138

Dementia 66 −16.62 1.96 <0.0001

Regression coefficients, standard errors (SE), and p-values resulting from the
linear additive model predicting the value of the health metric in wave 4
based on the incidence of health conditions within the last two years and
controlled for the value of the health metric in wave 3 and other covariates.
For the health conditions, the number of cases with incidence in the last two
years is provided. Health conditions are sorted by increasing effect. The
nonlinear effect of age is shown in Additional file 6
The reference categories are male, low education, low income and no
incidence of the respective health condition within the last two years
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for those at the margins – which does not mean that in-
formation on the margins is not relevant for policy-
makers. However, this does not imply that only
questions addressing the six domains of the generic set
should be used in every study. For specific purposes,
e.g., in clinical studies, additional questions addressing
other domains can be added, as has been previously pro-
posed [5].
In addition to the validity criteria already mentioned,

the validity of the metric is supported by further
findings. As can be seen from the linear additive model
to evaluate concurrent validity (Table 3), all of the well-
known gradients of health – age, education, and income
levels – are captured by the health metric [31]. The
well-documented gender differences in health are also
captured by the metric [31, 32]. Women are slightly
worse off than men, even when several covariates are
taken into account.
The health metric makes it possible to compare the

health of populations at the same point in time and over
a time period. Subgroups of the sample can be compared
based on the results of the linear additive model used to
examine concurrent validity. For example, persons with
psychiatric conditions are expected to have about 10
fewer points on the metric, i.e., worse health than per-
sons without psychiatric conditions when assuming that
all other characteristics are the same. The distribution of
health levels for wave 3 and wave 4 samples is visualized
in the top part of the person-item map (Fig. 1). Further-
more, in the linear additive model used to examine sen-
sitivity to change, the health status in wave 3 is used to
explain the health status in wave 4, taking the incidence
of specific health conditions into account.
In this study, the ELSA data was used for several

reasons. It contained questions to operationalize all six
domains from the minimal generic set. In addition to
the questions on functioning, it contained information
on socio-economic status, health-related variables and
detailed information on health conditions. Finally, longi-
tudinal data were available, which permitted the creation
of the health metric for two waves, making comparisons
over time possible. Because of all these properties, the
ELSA data enabled all the analyses necessary to examine
the psychometric properties of the developed health
metric. From our experience with this longitudinal
cohort study, we assume that similar analyses can be
carried out in a straightforward manner with further
existing surveys and studies.
There are some limitations of this study. Only one

exemplary dataset, ELSA, was analyzed. England is a
high-resource Western country and not representative
of the general population worldwide. In addition, the
focus of ELSA was on persons aged 50 and above and
not on the general population without age restrictions.

As the analyses were restricted to a single data source,
the investigated set of questions was limited. But pro-
posing questions is beyond the scope of the study. If
slightly different content is asked in the questions or dif-
ferent response options are used, results might differ.
Therefore, the results shown need to be validated in
further studies using data from different populations
with regards to country, age group, and setting. Add-
itionally, as shown in our analyses, the set of items in-
cluded in this metric does not allow discriminations at
both ends of the distribution in the general population.
In order to allow for more fine-grained separation at
these levels of health, additional domains or items,
possibly with more fine-grained response options, will
be necessary to separate individuals who are relatively
healthy or those that are in very poor levels of health.
Finally, in the regression models, an additive effect was
assumed for the different health conditions. As there is a
huge number of possible interaction terms and several
health conditions were rather rare, we decided not to
include interaction terms to obtain a more stable and
better interpretable model. Nonetheless, the same
principle of constructing a metric using the approach we
have used would hold true.

Conclusions
The health metric developed in this study – based on the
domains of the minimal generic set – proved useful for a
wide range of health comparisons, especially for different
groups of persons, and both cross-sectionally and over
time. Monitoring health over time provides especially use-
ful information for health care providers and health
policymakers and both in clinical settings and the general
population. Such a health metric offers a wide range of
applications, including comparisons of levels of health
among different groups in the general population, clinical
populations, and even populations within and across dif-
ferent countries. Yet, for different countries and settings,
the metric must be systematically evaluated.
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Additional file 1: Questions used to operationalize the six domains of
the minimal generic set of functioning and health. Questions used to
operationalize the six domains of the minimal generic set and items
created based on these questions. When more than one question was
used to create an item, the name of the created summary measure is
provided. (DOC 42 kb)

Additional file 2: Item locations, item thresholds, and outfit and infit
mean squares (DOC 40 kb)

Additional file 3: Graphic assessment of item fit. Comparison of
expected probabilities of responding above the threshold based on the
PCM (red line) and observed response frequencies for groups of persons
with close ability estimates (the “x”s are connected by dotted black lines).
(PDF 33 kb)
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Additional file 4: Boxplots on convergent and discriminant validity.
Boxplots of the health metric by general health, long-standing illness, life
satisfaction, grouped number of falls, and age groups. Boxes are drawn with
widths proportional to the square-roots of the number of observations in
the groups, i.e., the smaller the box, the smaller the group size. Groups with
a very small number of observations were merged. (PDF 9 kb)

Additional file 5: Correlation matrix on convergent and discriminant
validity. Spearman correlation matrix for the health metric and additional
health-related variables for wave-4 data. General health and long-standing
illness are more related to health (relevant for convergent validity), while life
satisfaction, the number of falls, and age are less related to health (relevant
for discriminant validity). (DOC 31 kb)

Additional file 6: Results on sensitivity to change – nonlinear effect of
age. Nonlinear effect of age (solid line) and 95 % confidence intervals
(dashed lines) resulting from the linear additive model predicting the
value of the health metric in wave 4 based on the incidence of health
conditions within the last two years, when controlling for the value of
the health metric in wave 3 and other covariates. (PDF 5 kb)
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