
Weiss et al. Population Health Metrics            (2022) 20:2  
https://doi.org/10.1186/s12963-021-00278-9

RESEARCH

Estimating the impact of donor programs 
on child mortality in low- and middle-income 
countries: a synthetic control analysis of child 
health programs funded by the United States 
Agency for International Development
William Weiss1* , Bhumika Piya2, Althea Andrus3, Karar Zunaid Ahsan4 and Robert Cohen5 

Abstract 

Background: Significant levels of funding have been provided to low- and middle-income countries for develop-
ment assistance for health, with most funds coming through direct bilateral investment led by the USA and the UK. 
Direct attribution of impact to large-scale programs funded by donors remains elusive due the difficulty of knowing 
what would have happened without those programs, and the lack of detailed contextual information to support 
causal interpretation of changes.

Methods: This study uses the synthetic control analysis method to estimate the impact of one donor’s funding 
(United States Agency for International Development, USAID) on under-five mortality across several low- and middle-
income countries that received above average levels of USAID funding for maternal and child health programs 
between 2000 and 2016.

Results: In the study period (2000–16), countries with above average USAID funding had an under-five mortality rate 
lower than the synthetic control by an average of 29 deaths per 1000 live births (year-to-year range of − 2 to − 38). 
This finding was consistent with several sensitivity analyses.

Conclusions: The synthetic control method is a valuable addition to the range of approaches for quantifying the 
impact of large-scale health programs in low- and middle-income countries. The findings suggest that adequately 
funded donor programs (in this case USAID) help countries to reduce child mortality to significantly lower rates than 
would have occurred without those investments.

Keywords: Synthetic control analysis, Integrated Management of Childhood Illness (IMCI), Low- and middle-income 
countries (LMICs), United States Agency for International Development (USAID), Child mortality, Quasi-experimental 
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Background
Substantial resources have been provided to low- and 
middle-income countries (LMICs) to support the devel-
opment of the health sector. Close to $600 billion of 
development assistance for health (DAH) was provided 
between 1995 and 2018 [1]. In 2018 alone, the DAH 
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was estimated at $38.9 billion with the majority of funds 
coming through direct bilateral assistance, with the 
USA leading at 34% of total DAH followed by the UK 
at 8.4%. Of the total 2018 DAH, 24% ($9.5 billion) went 
to HIV/AIDS, 20.1% ($7.8 billion) went to newborn and 
child health, 14.3% ($5.6 billion) went to health systems 
strengthening, and 12.1% ($4.7 billion) went to repro-
ductive and maternal health [1]. Multilateral develop-
ment agencies and other private–public partnerships, 
such as the Global Fund, The World Health Organiza-
tion (WHO), World Bank, the Bill and Melinda Gates 
Foundation, and the United Nations Children’s Fund 
(UNICEF) jointly disbursed approximately 31% of total 
DAH in 2018 [2]. Single-year estimates of DAH specifi-
cally for reproductive, maternal and child health vary by 
source with estimates ranging from $10.8 to $13.1 billion, 
with the USA consistently as the single largest contribu-
tor across sources [3].

Given this large investment, donors of health programs 
want evidence that health has improved in the commu-
nities served by these donors’ programs. This is desired 
in order to be accountable for the funding that donor 
agencies receive, as well as to justify continued funding 
for these programs [4]. For example, the Bill and Melinda 
Gates Foundation (BMGF) has a website for press 
releases that allow the Foundation to publicize its mater-
nal and child health programs [5]. The United King-
dom’s Foreign, Commonwealth & Development Office 
(FCDO) has a Development Tracker where one can find 
reports on the results of the health programs it funds [6]. 
The United States Agency for International Development 
(USAID) has a document library called the Development 
Experience Clearinghouse with annual reports to Con-
gress that have information about programs aiming to 
prevent child deaths and their results [7].

In addition, to make an even stronger case to constitu-
encies that a donor’s program is valuable, it is desirable 
to have evidence that can directly attribute the cause of 
positive changes in patient or population health to that 
specific donor’s program. Evidence of such attribution is 
rare, however, as it requires a difficult-to-achieve evalua-
tion design that justifies causal inference about the effects 
of the program [8]. Evidence of attribution is particu-
larly difficult in low- and middle-income countries with 
a history of donor support [9]. As Victora et  al. articu-
late very well, traditional evaluation designs that compare 
a donor-funded intervention in a program area with no 
intervention in a control area may no longer be feasible. 
Health programs, including child health programs rel-
evant to this study, have been and are being scaled up 
nationwide, and the existence of potential comparison 
areas or populations—that have not experienced donor-
supported child health interventions—is rare. Thus, 

traditional evaluation designs may not provide a credible 
counterfactual necessary for causal inference. And, it is 
hard to tease out benefits of a program from one donor 
when there are many donor programs in a country and 
most/all work in partnership with host government and 
communities, without detailed information about these 
programs and the contextual factors that would allow for 
plausible interpretations of impact [10, 11].

Victora et  al. argue for the development of a national 
evaluation platform in each country with the district as 
the main unit of analysis that ‘includes documentation 
of contextual factors and implementation of many pro-
grams—and indicators of coverage, impact, and cost” (pg 
94) [9]. In each country, data would be compiled from 
existing population-based sources and from routinely 
collected data from health facilities and administrative 
sources. These data would reflect a conceptual model 
around maternal and child health interventions leading 
to reduced mortality [12]. The quality of data would be 
assessed and improved. Data would then be organized to 
facilitate cross-district analysis by time and equity. This 
approach may be considered an optimal approach given 
the difficulties with evaluation in LMICs using traditional 
methods. However, this approach might be considered a 
long-term solution as platforms integrating population 
information (vital registration, household surveys) with 
facility-based and administrative statistics at the district-
level on a routine basis do not currently exist in most 
LMICs. Developing such platforms would  require con-
siderable expertise and resources [13].

This paper provides an alternative, interim method 
to estimate the impact of donor funding on health out-
comes, in the absence of detailed contextual information. 
Using the case of a single donor’s effort (USAID), we use 
a synthetic cohort analysis methodology to quantify the 
impact of USAID funding on under-five mortality across 
several low- and middle-income countries. The analysis 
presented here provides a data-driven strategy to pro-
duce a counterfactual (i.e., a circumstance with no inter-
vention) to quantify the impact. The synthetic control 
method has been used in high-, middle- and low-income 
countries [14–17]. Abadie, Diamond, and Hainmuel-
ler describe the utility of the synthetic control method 
(Additional file 1: Section S1) [14].

In this study, we apply a novel method (synthetic con-
trol) to estimate the impact of donor investments in child 
health. Specifically, we attempt to quantify the impact 
of USAID investment and support on child mortality. 
We test the method by observing a particular scenario 
where we believe the impact of USAID investments can 
be quantified using a synthetic control approach. The 
scenario takes place in countries with relatively high lev-
els of USAID support for child health during the period 
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of the World Health Organization’s initiative to acceler-
ate reductions in child mortality, called the Integrated 
Management of Childhood Illness (IMCI) and Integrated 
Community Case Management (iCCM) (1999–2016).

Estimating the impact of United States Agency 
for International Development child health programs
In 1995, the World Health Organization convened global 
partners to develop a new approach to child healthcare 
in developing countries, called Integrated Management 
of Childhood Illness (IMCI). An integrated and holis-
tic approach to child health, IMCI aims to reduce child 
mortality and morbidity while promoting health and 
well-being of children under five years of age [18]. Shortly 
after development, different countries moved with vary-
ing speed to implement the recommendations of IMCI 
[19]. By mid-1999, 20 countries were introducing IMCI, 
31 countries had introduced IMCI and were beginning 
to implement activities, and 12 countries had begun the 
expansion phase, while twenty-nine LMICs had not yet 
introduced IMCI [20]. In September 2000, 189 nations 
met at the United Nations to sign the Millennium Decla-
ration, committing them to try to achieve the Millennium 
Development Goals (MDGs). MDG4 aimed to reduce 
child mortality by two-thirds from 1990 levels by 2015. 
In addition, the second half of the treatment period, from 
2006 on, saw a dramatic year-over-year increase in exter-
nal funding for malaria programs—including the Global 
Fund, World Banking, and USAID under the President’s 
Malaria Initiative or PMI, and other donors—in countries 
where it was a major cause of child mortality, primarily in 
Africa [21].

USAID was well positioned to contribute to these ini-
tiatives. To better describe here USAID’s approach to 
child mortality reduction, we reviewed USAID’s annual 
Reports to Congress on the Child Survival and Health 
Programs Fund from 2001–2004 as these were the early 
years of IMCI and the MDGs [22–25]. We reviewed 
the activities that USAID invested in during this period 
(e.g., social and behavioral change), the specific prob-
lems being addressed (e.g., treatment of diarrhea), and 
USAID’s approaches (e.g., quality improvement). One 
common attribute across USAID child health programs 
(including malaria-specific programs) was that activi-
ties were directed at all levels of the health system, from 
household level health promotion to national policy. 
Another common attribute was a focus on introduc-
ing and scaling up high-impact interventions for the 
major causes of child mortality and morbidity, includ-
ing developing the evidence to support scale and quality. 
Most programs addressed the treatment of the sick child, 
including diarrhea and pneumonia, and malaria where 
relevant. The final common attribute was USAID support 

for three broad groupings of activities: developing and 
leveraging partnerships with the government, civil soci-
ety and donors; health system strengthening; and target-
ing cost-effective high-impact interventions to those in 
most need. These common attributes across countries 
and other review findings are used to describe the theory 
of change for this analysis (Fig. 1).

We hypothesize that US investment, engagement, and 
partnership with countries, during the IMCI period, 
would accelerate reductions in child mortality in those 
countries, as visualized through the theory of change 
(Fig.  1): (1) increased capacity building and health pro-
motion related to Child Survival (improving both sup-
ply and demand); (2) encouraging partners and other 
stakeholders to increase engagement with Child Survival 
including more rapid policy change; and, (3) facilitat-
ing development of evidence and/or more rapid intro-
duction of evidence-based practices to reduce child 
mortality. These efforts would lead to earlier and more 
successful scale-up of Child Survival interventions, and 
faster under-five mortality reduction, than without these 
investments. More specifically, we hypothesize that 
under-five mortality rates (U5MR) in countries with con-
sistent and strong USAID investment would, over the last 
two decades, be quantifiably lower than they would have 
been if USAID had not invested and engaged.

Methods
Synthetic control analysis method
This paper uses the synthetic control analysis (SCA) 
method to retrospectively quantify the impact of USAID 
funding on under-five mortality across several low- and 
middle-income countries. While other approaches also 
quantify impact (e.g., difference-in-difference, propen-
sity scores), the SCA method does not require some of 
the critical assumptions of these other approaches [15]. 
The SCA method uses a nonparametric, data-driven 
procedure to create a control group (a synthetic control) 
that is similar to a treatment group in a pre-intervention 
period [14]. The SCA method assesses the outcomes (and 
predictive factors) of a group of non-treatment countries 
and identifies a subset of countries that are similar to 
the treatment countries. The SCA process assembles the 
counterfactual by weighting the outcomes of this subset 
of countries to produce a synthetic control: the outcome 
in the treatment countries in the absence of treatment 
[15]. Outcomes for the control group are then compared 
to the outcomes in the treatment group during the inter-
vention period to quantify the impact of the treatment. 
In this paper, the units comprising the control and treat-
ment groups are countries, the intervention is USAID 
investment in maternal and child health during the first 
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15–20  years of the IMCI initiative, and the outcome is 
the U5MR, as described in more detail below.

In sum, the SCA presented here provides a data-driven 
strategy to produce a counterfactual to enable the quan-
tification of impact of USAID child health programs, 
including malaria-specific programs, under the condi-
tions described. In this section, we describe in more 
detail the SCA method including assumptions, construc-
tion of the counterfactual, quantification of the impact 
and sensitivity analyses.

Treatment unit
A synthetic control analysis (SCA) requires a treat-
ment unit, a donor pool of similar units, a treatment 
period, an outcome variable, and a set of predictor vari-
ables to construct the synthetic control. We purposively 
selected countries with the highest amount of continu-
ous USAID investments in child health during the IMCI 
period to make up the treatment unit. This is an example 
of ‘testing at the margins.” If we do not see quantifiable 
treatment effects in these high-investment countries, 
then we would not expect to see quantifiable effects in 
countries where USAID invested at lower levels. The 
authors did not expect the investment of one US dollar 
to have an impact, and we did not have any knowledge 
of a threshold beyond which investments would trigger a 
net positive impact; therefore, quantifying the impact in 

countries with relatively high levels of investment made 
most sense as the starting point for selecting the treat-
ment units under this novel analysis approach for quanti-
fying the impact of donor funding.

The selection criteria for high-investment countries 
that comprise the treatment unit entailed a two-step pro-
cess. First, we selected countries that received continu-
ous maternal and child health (MCH) funding during the 
period 1999–2016, based on the USAID’s annual Reports 
to Congress on the Child Survival and Health Programs 
Fund for 1999–2004 and later from the US Department’s 
Foreign Assistance Coordination and Tracking System 
financial reporting system from 2007–2016 (not avail-
able to the public). In total, 25 countries satisfied this 
condition. In the 1999–2004 period, funding of malaria 
programs was included in the Child Survival and Health 
Program funding and not available separately. From 
2007–2016, MCH and malaria funds were separated and 
therefore, these two funds were combined to provide a 
consistent tracking of funds for the 1999–2016 period.

For the second step of the process, we examined 
the distribution of these countries along two param-
eters: MCH plus malaria funding in total and per cap-
ita amounts. In Fig.  2, the axes represent the median 
amounts for total (x-axis) and per capita (y-axis) fund-
ing. The median annual amount received by these coun-
tries is $32.5  M and per capita amount is $1.19. From 

Fig. 1 Theory of change by which child mortality reduction is faster in countries with USAID maternal and child health and malaria investments 
than in otherwise comparable countries
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this, we identified eight high-investment countries that 
fall in the first quadrant of the chart, i.e., the countries 
that received above the median amounts on both axes: 
Senegal, Zambia, Mali, Malawi, Madagascar, Ghana, 
Mozambique, and Uganda. These eight countries make 
up the Treatment Unit.

Rather than use an individual country as the treat-
ment unit, the treatment unit in this analysis was 
comprised of multiple treated units (the eight coun-
tries listed above), as done previously [16, 17]. We fol-
lowed the alternative approach used by Lepine et  al. 
to construct a single treated unit from the average of 
the outcomes and predictor variables of the eight high-
investment USAID countries and then calculate the 
treatment effect of this single treated unit compared to 
the synthetic control. This was done instead of pooling 
the individual treatment effect of each country, since 
the approach we used was found by to lead to similar 
estimates, but with a more precise counterfactual that 
is less influenced by outliers [16]. The treatment unit 
was constructed from the eight-country yearly aver-
age of the outcome variable (U5MR) and the predic-
tors, with the average of each variable weighted by the 

number of live births as estimated by the UN Popula-
tion Division [26].

Donor pool
All countries classified by the World Bank as low- or 
low-middle-income countries in 2016 were considered 
eligible to be donors. However, because SCA requires 
that donors not receive exposure to the treatment, coun-
tries were excluded from being in the donor pool if they 
received USAID financial assistance earmarked for either 
maternal and child health or malaria for more than half 
(> 9) of the sixteen years from 1999–2016. Although we 
originally hoped to exclude countries that received any 
USAID funding in the treatment period, setting this strict 
criterion would have eliminated almost all countries 
from the donor pool. Our criteria allowed 48 countries to 
remain in the donor pool (Additional file 1: Table S2.1a).

Another consideration with the donor pool of coun-
tries is that, as low- and lower-middle-income countries, 
they are likely to have received financial and technical 
support from other donors in the treatment period that 
contributed to reductions in child mortality. This leads 
back again to one rationale for this analysis: the need to 

Fig. 2 Treatment unit selection. The upper right quadrant (Quadrant 1) shows countries with above average funding in both total amount of US 
dollars, and per capita funding in US dollars. Funding amounts represent designated funding for maternal and child health (MCH) and for Malaria
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find alternative ways to assess the impact of donor pro-
grams when there is no pure control. The potential con-
tamination of this impact analysis from some donor pool 
countries that received either some USAID funds and/
or other kinds of technical support for child mortality 
reduction is a real possibility. To account for potential 
differences between the donor pool and the treatment 
group of countries, development assistance from donors, 
political stability, and other factors were controlled for in 
this analysis (see section “Predictor variables”). Popula-
tion size was also accounted for in the calculation of the 
outcome measure.

Time period
We considered the treatment to have started in 1999 
since many of the initial progress reports of IMCI imple-
mentation were published that year. Few, if any, countries 
would have started implementation sooner at any scale. 
Some countries in this analysis may have started IMCI 
later than 1999, but that is consistent with the hypoth-
esis that USAID engagement leads to earlier and more 
intense implementation of new policies. The analysis 
scans a relatively long intervention period (1999–2016). 
The trends in outcome between treatment and control, 
during the intervention period, will reflect smaller peri-
ods of increasing and decreasing intensity in support of 
IMCI within the period. Choosing 1980 as the pre-inter-
vention start year permits a long pre-intervention period 
(1980–1998), which helps SCA optimize its control. The 
year 1980 was also a good start year for the pre-interven-
tion since data on many covariates only began to become 
widely available in the 1980s, due in part to the advent 
of the Demographic and Health Surveys. Because this 
analysis was initially conceptualized in June of 2017 and 
the dataset was compiled at that time, 2016 was chosen 
as the end date of the analysis.

Dependent variable
The dependent variable is the under-five mortality rate 
(U5MR), since it provides an overall measure of child 
health and was the variable used for MDG4 [27]. The 
median value of U5MR is estimated annually for all coun-
tries by the UN Inter-agency Group for Mortality Estima-
tion (UN IGME), which provides a consistent approach 
across countries and adjusts its estimates for shocks with 
significant child mortality impacts and HIV mortality, 
was used as the data source for the dependent variable in 
this analysis [27].

In 1999, the unweighted mean U5MR of the eight 
countries in the treatment group was 161.7, while the 
unweighted mean U5MR of the 48 countries in the 
donor pool was 80.1 [27]. This difference is expected 
that USAID would invest child health resources in 

high-mortality countries. However, the purpose of the 
synthetic control method is to equalize the dependent 
and predictor variables in the pre-intervention period 
(see more below).

Predictor variables
SCA requires that the treated unit and the synthetic 
control be similar during the pre-intervention period 
when comparing across measures that may predict the 
outcome variable. However, child mortality reduction is 
multifactorial. The Success Factors Study for Women’s 
and Children’s Health examined over 250 indicators for 
data availability and potential to associate with declines 
in child mortality [28, 29]. It divided these many varia-
bles into 11 different policy areas (Table 1). It found that 
these policy areas contributed additively to child mor-
tality reduction and that approximately half of the gains 
in child mortality came from improvements in coverage 
in the health sector (e.g., immunizations, fertility reduc-
tion), and the other half came from gains in coverage out-
side the health sector (water and sanitation, per capita 
GDP growth). Note that within these policy areas, vari-
ables were often highly correlated (e.g., between antena-
tal care and skilled birth attendance). For that reason, to 
avoid known multi-collinearity in the initial model, our 
initial synthetic control model included one variable 

Table 1 Policy areas tested for synthetic cohort model

Policy area Variables tested in synthetic cohort model

Wealth Log GDP per capita (constant 2010 USD)

Official development assistance per capita (USD)

Service delivery Skilled birth attendance (%)

Physicians per 1000 population

Antenatal care visits (4+)

Health financing Health expenditure per capita (2011 international $)

Out-of-pocket health spending (% of total health 
spending)

Immunizations DPT immunization (% of 12–23-month-olds)

Malaria or HIV HIV prevalence (% 15–49 year olds)

Fertility Total fertility rate (births per woman)

Nutrition Stunting (% of children under 5)

Governance Government effectiveness index

Political stability index

Polity score

Infrastructure Percent of population in urban areas

Land area

Population density

Water, sanitation, 
and hygiene

Access to improved water source (%)

Access to improved sanitation (%)

Education Average years of female education, women aged 
20–24
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from each policy area identified by the Success Factors 
Study, which was used as the starting point for further 
optimization as described below. During optimization, to 
avoid over-fitting the model, we did not require that the 
final model keep exactly one variable from each policy 
area, since some variables from the same policy area were 
only weakly correlated with each other, while others from 
different policy areas may have been either highly corre-
lated to each other or of low predictive value for U5MR.

Assumptions
SCA used here includes several assumptions. For accu-
rate estimation of effects, only one unit (or one group of 
units) under study are treated to the intervention. The 
donor units cannot be exposed to the same/similar inter-
vention, defined here as above median absolute and per 
capita MCH and malaria funding from USAID through-
out the 2000–16 period, in addition to funding in each 
year of the period. Additionally, the values of the predic-
tor variables must be comparable for both the treated and 
the synthetic control.

We considered the annual U5MR estimated by the 
IGME as the dependent variable in this paper [27]. SCA 
needs a form of low-rank or factor structure with addi-
tive noise, or for outcomes to follow an autoregressive 
process [14, 30]. The IGME estimated U5MR using the 
Bayesian B-splines bias-adjusted model, which uses an 
(hierarchical) autoregressive time series model to follow 
the observed changes in the data closely [31, 32]. When 
estimating the U5MR, the IGME data model adjusts for 
the errors in the observations, including the systematic 
biases associated with different types of data sources 
(viz., civil registration, sample surveys) [32]. In addition, 
our choices of long pre-intervention period (1980–1998) 
and model optimization procedure (see below) to ensure 
excellent pre-treatment have helped meeting the suffi-
cient conditions for low bias in SCA [14].

Model optimization
SCA provides an unbiased method for choosing an 
appropriate counterfactual for non-random treatment 
assignment. We iteratively added or replaced differ-
ent candidate predictor variables from the model and 
selected the model which had the lowest root-mean-
squared prediction error (RMSPE). A previous analy-
sis that used U5MR as an outcome variable found that 
models with an RMSPE < 3 show a good fit between 
the treated unit and the synthetic control [17]. We con-
strained this optimization by insisting that predictors 
likely to confound our results (namely, polity score and 
total foreign aid received per capita) be included in the 
final model. We followed a previous SCA analysis by 

including three lags of the dependent variable as predic-
tor variables [14].

Procedure
We conducted all analyses in Stata version 14 SE using 
the synth command and the following code:

synth [dependent variable] [control variables], 
trunit() trperiod(1999) xperiod(1980(1)1998) 
counit([donor countries]) nested fig allopt 
keep(filename.dta, replace)

Statistical analysis and inference
The synth procedure calculates a difference in the out-
come variable between the treatment and control group 
in the post-intervention period, but on its own the signif-
icance of this gap is unclear. The synth_runner procedure 
in STATA permits the direct calculation of the statistical 
significance of the measured gap in outcomes after the 
intervention. Synth_runner performs the synthetic con-
trol procedure for the treatment unit and for each unit of 
the donor pool (placebos), calculating the size of the gap 
for each placebo each year.

Because we are testing the hypothesis that U5MR 
declined faster in USAID-supported countries than in 
similar donor countries, we use one-sided p values to 
test statistical significance. The one-sided p value is the 
number of placebos whose measured treatment gap each 
year was larger in the same direction as for the treatment 
unit, divided by the total number of placebos. Since the 
placebo effect may be quite large if the units were not 
matched well in the pre-treatment period, the measured 
gap for each placebo in the post-intervention period is 
standardized by dividing it by the pre-treatment gap size 
[33].

Sensitivity analysis
We carried out several sensitivity analyses and checks 
to test the calculations and inferences made in the main 
analysis. The following analyses and checks are included 
in Additional file 1: Section S2:

• S2.1 Leave one out robustness check: exclusion of 
highest positive weight country from synthetic con-
trol

• S2.2 Analysis of Quadrant 3 countries
• S2.3 Comparing ‘nested’ and ‘non-nested’ optimiza-

tion routines
• S2.4 Country-by-country analyses of Quadrant 1 

countries
• S2.5 Additional uncertainty analysis using boot-

strapped confidence intervals 20
• S2.6 ‘In-time’ Placebo Check
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• S2.7 Pooling the treatment effects of individual treat-
ment units

• S2.8 Comparative funding between treatment and 
synthetic control countries during the treatment 
period (1999–2016)

• S2.9 Restricting countries in the donor pool to those 
receiving fewer years of USAID funding

• S2.10. Repeated random assignment of eight coun-
tries in the donor pool into single control units for 
calculating alternative treatment effects and placebo 
testing

• S2.11. Results of a difference-in-difference analysis 
using the same donor pool and treatment units used 
in the main analysis

Results
An optimized model
Using an iterative model evaluation process, we identi-
fied a best fit model with the lowest RMSPE of 0·5969 
(Table 2) that left 10 of the original 20 predictors remain-
ing. For example, potential predictors such as skilled 
birth attendance, physicians per 1000 population, and 

four or more antenatal care visits were removed by the 
model optimization to achieve the minimal difference 
(the RMSPE) between the treatment and control in the 
pre-intervention period. In this best fit model using this 
unbiased approach, there is close agreement between the 
treatment unit and the synthetic control for most predic-
tor variables, with HIV prevalence and DPT (diphtheria, 
pertussis, and tetanus toxoid) vaccination coverage the 
main exceptions (Table  3). The synthetic control con-
sisted of eight countries: Chad, Eritrea, Gambia, Guinea-
Bissau, Mongolia, Namibia, Niger, and Swaziland/
Eswatini (Table 4). This final model showed a very close 
agreement in U5MR between the synthetic control and 
treatment unit in the pre-intervention period up to 1999 
(Fig.  3). Values to the left of the red vertical line reflect 
the pre-intervention period. The blue line shows the real 
U5MR trend (weighted average) of the treatment coun-
tries in Quadrant 1 of Fig. 2. Red dashed line shows the 
real U5MR trend of the synthetic control. There is very 

Table 2 Comparison of synthetic Quadrant 1 root-mean-
squared prediction errors (RMSPE)

With the exception ‘Predictor year range,’ all RSMPE were generated with pre-
treatment period 1980–1998

Synth models RMSPE

Outcome lags only

1980, 1990, 1998 2.3624

Predictors with lags

TFR, stunting, HIV + 3 lags 0.9203

TFR, stunting, HIV, DPT + 3 lags 0.8477

Clean water and sanitation + 3 lags 1.0187

Logged GDP + urbanization + ODApc + 3 lags 1.7597

Polity score + 3 lags 2.0387

Logged GDP + urbanization + ODApc + polity score + 3 lags 2.2416

Predictors without lags

TFR, stunting, HIV, DPT 4.5781

Clean water and sanitation 3.9344

Logged GDP + urbanization + ODApc 26.7628

Full model

All 10 predictors + 3 lags 0.5969

All 10 predictors + 3 lags (without Chad) 0.6034

Predictor year range

1985–1998 0.6219

1990–1998 0.6438

Quadrant 3

All 10 predictors + 3 lags 0.0618

Non-nested

All 10 predictors + 3 lags 1.1046

Table 3 Predictor means between synthetic and test case in 
pre-intervention period—Quadrant 1 countries

*Ordering of these predictors is important in the nested analysis and the results 
can be replicated if the variables are entered in Stata syntax in the above 
manner

Variables* Real Synthetic Mean Std dev.

TFR 6.56 6.77 4.928765 1.681963

Stunting 49.22 48.45 35.75449 16.63775

HIV 5.10 1.32 1.552914 3.751662

DPT 47.73 30.42 58.76974 28.79853

Sanitation 17.10 17.03 45.64145 28.97808

Clean water 40.30 44.20 66.24747 22.26785

Logged GDP 6.08 6.49 7.378961 1.157757

Urbanization 23.36 23.36 41.80917 20.47601

ODA per capita 41.06 41.10 45.79208 46.53611

Polity score − 2.90 − 2.91 − 1.25822 6.643895

Under-five mortality (1998) 167.31 167.31 103.7425 68.59552

Under-five mortality (1990) 189.46 189.43 118.0603 75.78079

Under-five mortality (1980) 219.89 219.85 147.9589 78.69472

Table 4 Country weights in synthetic Quadrant 1

Percent composition of synthetic control

Country Weight

Chad 0.590

Eritrea 0.031

Gambia 0.068

Mongolia 0.040

Namibia 0.076

Niger 0.077

Guinea-Bissau 0.040

Swaziland 0.078
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little difference between the blue and red lines in the pre-
intervention period  reflecting a very low RMSPE and a 
good model fit.

Quantifying the impact of USAID investments to reduce 
child mortality in high‑investment countries
A significant divergence between the treatment unit 
(blue line: countries with relatively high USAID invest-
ment in child health) and the synthetic control (red line) 
emerges at the start of the intervention period (1999) 
and continues through the end of the treatment period 
(Fig.  3). Countries with relatively high levels of USAID 
investment in child health (the treatment unit) had a 
U5MR that was between 2 and 38 deaths per 1000 live 
births lower (mean = 29) than the synthetic control in the 
treatment period (Table 5).

Placebo testing and inference
To calculate the statistical significance of the difference 
between the treatment unit and the synthetic control, 
we check whether our estimate of the difference could 
be due entirely to chance using what is called a placebo 
test (see Abadie, et  al. 2010 for more details than pro-
vided below) [34]. We check how often we would find the 
same or greater difference if we used each of the other 
countries in the donor pool at random as the treatment 
unit rather than the countries with high levels of USAID 
investment in child health that make up the treatment 
unit in this analysis. The placebo test provides a distribu-
tion of the U5MR differences between all the countries in 
the donor pool that are not part of the treatment unit and 

Fig. 3 Trends in under-five mortality: Quadrant 1 (treated) versus 
synthetic Quadrant 1. Red vertical line reflects intervention year of 
1999. Blue line represents real trend of weighted average of U5MR 
of countries of Quadrant 1. Red dashed line represents real trend of 
synthetic control U5MR

Table 5 Post-treatment results: effects and their p values

Effect size is in units of U5MR

p values are exact, empirical p values based on placebo testing. Standardization involves dividing the effect size by RMSPE

Year Estimates Two‑sided Standardized One‑sided Standardized
p values Two‑sided p values p values One‑sided p values

1999 − 2.156 0.326 0.130 0.130 0.086

2000 − 5.528 0.130 0.001 0.043 0.001

2001 − 9.991 0.065 0.001 0.001 0.001

2002 − 14.917 0.043 0.001 0.001 0.001

2003 − 19.921 0.043 0.001 0.001 0.001

2004 − 24.590 0.043 0.001 0.001 0.001

2005 − 28.302 0.065 0.001 0.001 0.001

2006 − 30.641 0.065 0.022 0.001 0.001

2007 − 32.603 0.065 0.022 0.001 0.001

2008 − 34.145 0.065 0.022 0.001 0.001

2009 − 35.084 0.065 0.022 0.001 0.001

2010 − 35.352 0.065 0.022 0.001 0.001

2011 − 35.457 0.043 0.043 0.001 0.001

2012 − 36.681 0.022 0.043 0.001 0.001

2013 − 37.445 0.022 0.043 0.001 0.001

2014 − 38.004 0.022 0.043 0.001 0.001

2015 − 38.566 0.022 0.043 0.001 0.001

2016 − 38.496 0.022 0.043 0.001 0.001
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the synthetic control. If we find that the other countries 
in the donor pool have similar differences in U5MR com-
pared to the synthetic control, then our inference is that 
there is insufficient statistical evidence that our treatment 
unit (countries with high levels of USAID investment in 
child health) has a significantly lower U5MR than the 
control unit. The results of the placebo testing are visual-
ized in Fig. 4. The red vertical line represents the inter-
vention start year of 1999. All lines represent the mean 
difference between U5MR of the tested country and its 
synthetic control. The black line represents the differ-
ence from the synthetic control and the weighted average 
U5MR of the original treatment unit countries (the coun-
tries in Quadrant 1 of Fig. 2 that have relatively high lev-
els of USAID investment in child health). The gray lines 
represent the difference in U5MR between the 48 donor 
countries used as placebos and the synthetic control. The 
statistical significance of the placebo testing is provided 
in Table 5. The difference in U5MR between the synthetic 
control and the treatment unit (treatment unit countries 
with high levels of USAID investment in child health) is 
statistically significant in the 2000–16 treatment period 
(one-tailed p < 0.01).

Sensitivity analyses
Additional details, tables and figures about each of these 
sensitivity analyses can be found in Additional file  1: 
Section S2.

S2.1 Leave one out robustness check: exclusion of highest 
positive weight country from synthetic control
In one sensitivity analysis, we excluded Chad from the 
donor pool as it had a relatively large weight among 

countries making up the synthetic control for a reason 
unclear to the authors. This was done to check whether 
our results would provide the same inference when a 
highly weighted country was removed from the donor 
pool. The estimated impact of high-level USAID invest-
ment in this sensitivity analysis was 19 deaths per 1000 
births lower, on average, as compared to the synthetic 
control without Chad in the donor pool (p < 0.01).

S2.2 Analysis of Quadrant 3 countries
Another sensitivity analysis of countries with a rela-
tively low but consistent level of USAID investments in 
child health (see countries in Quadrant 3 of Fig. 2) also 
found significant, positive impacts on under-five mortal-
ity as compared to control during the treatment period 
The mean difference between the treatment unit made up 
countries with low levels of USAID investment and the 
synthetic control was an under-five mortality rate that 
was 1.48 per 1000 live births lower. The difference was 
statistically significantly lower in the treatment unit for 
16 of 17 years (2001–2006, p < 0.05; 2007–16, p < 0.01).

S2.3 Comparing ‘nested’ and ‘non‑nested’ optimization 
routines
The SCA procedure normally returns results based on 
constrained quadratic optimization [15]. One option 
to further reduce the RMSPE is to choose nested opti-
mization, which searches for additional combinations 
of control units that might reduce RMSPE. However, 
unpublished reports suggest that nested optimization can 
lead to unstable results that depend on the order vari-
ables are entered in the command line [35]. For that rea-
son, while we aimed to select models in an unbiased way 
using RMSPE, we also ran a sensitivity analysis without 
the nested option to remove the risk of unstable results. 
This analysis returned similar results to the SCA model 
that excluded Chad (Additional file 1: Section S2.1). The 
average treatment effect was 17 deaths per 1000 live 
births lower in the treatment group than in the control 
with a range of 3–25 deaths per 1000, narrowing after 
2010 but maintaining statistical significance throughout 
the treatment period (one-tailed p < 0.01).

S2.4 Country‑by‑country analyses of Quadrant 1 countries
We also carried out SCA for the individual countries in 
Quadrants 1. The results showed considerable heteroge-
neity, with a few showing very large reductions in U5MR 
compared to a synthetic control (e.g., Uganda, Zambia), 
many showing a small effect, and a few showing a rise in 
U5MR compared to a control. This variability provides 

Fig. 4 Treatment unit and 48 placebos. Red vertical line represents 
intervention year of 1999. All lines represent mean difference 
between U5MR of represented country and its synthetic control. 
Black line represents weighted average of Quadrant 1 countries. Gray 
lines represent 48 donor countries as placebos
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support for the approach of using a more stable, single 
treatment unit composed of the pooled, weighted average 
of each country in the treatment group, to prevent the 
effects of outliers [34].

S2.5 Additional uncertainty analysis using bootstrapped 
confidence intervals
To examine the statistical significance of the impact of 
USAID investment in child health on U5MR, we esti-
mated both nonparametric and parametric bootstrap 
confidence intervals for the time-varying effect estimate 
using an R-based application developed by Carling et al. 
(2016) and Li (2017) [36, 37]. The bootstrap estimation 
of the confidence band for the treatment unit did not 
cross zero in the post-treatment period, indicating that 
the impact of high USAID investment on U5MR was sig-
nificantly different than the synthetic control in the post-
treatment period (mean treatment effect = 24/1000).

S2.6 ‘In‑time’ Placebo Check
Another check on the analysis is the ‘in-time’ placebo test 
that can help check on the appropriateness of the inter-
vention period selected for the main analysis [14]. The 
results of the main analysis are more credible if treat-
ment effects are observed in the main analysis treatment 
period but not in the ‘in-time’ placebo test period prior. 
We conducted an ‘in-time’ placebo by constraining the 
pre-treatment period to be 1980–1990, and the placebo 
treatment period became 1991–1998. The pre-treatment 
trajectory of the in-time placebo test is very close to the 
pre-treatment trajectory of the main analysis. However, 
under-five mortality trajectories of the treated unit and 
its synthetic control did not diverge after the placebo 
treatment year (i.e., 1991) as compared to the main analy-
sis. This shows that, in contrast to main analysis SCA, the 
‘in-time’ placebo has no perceivable effect. This finding 
lends further credibility to the selection of the treatment 
period in the main analysis.

S2.7 Pooling the treatment effects of individual treatment 
units
In the main analysis, the dependent and independent 
variables for eight countries with high USAID invest-
ment in maternal and child health are averaged (weighted 
by number of live births in the country) by year to cre-
ate a single treated ‘average’ unit. Then the synthetic 
control method is used to calculate a treatment effect 
for the single treatment unit in comparison with a syn-
thetic control. In this check, we do the reverse. We first 
apply the synthetic control method to each of the eight 
countries individually. We then we pool the treatment 
effects obtained from each treated country by calculating 

the mean and confidence interval of the eight estimated 
effects in each year [16]. We also pool 18 years of treat-
ment effects and calculate an overall mean treatment 
effect with confidence interval for the entire 18-year 
treatment period. The treatment effects in this analysis 
are statistically significant and substantial (range: − 1.3 
to − 22.3, mean: − 16.5) but not as large as the treatment 
effects in the main analysis.

S2.8 Comparative funding between treatment and synthetic 
control countries during the treatment period (1999–2016)
We checked our main analysis by observing per capita 
funding during the treatment period to identify whether 
differential funding patterns between treatment coun-
tries and synthetic control countries might explain the 
significant treatment effect observed in the main analysis, 
and as predicted by the theory of change. In this section, 
we explored three indicators of funding: USAID fund-
ing for maternal and child health (MCH) and malaria; 
(2) Net official development assistance (ODA) per capita; 
and (3) Total health expenditures per capita. External 
and/or internal non-USAID funding does not appear to 
explain the treatment effects of the main analysis. The 
pattern of USAID funding, however, is consistent with 
the treatment effects in the main analysis and is consist-
ent with the theory of change. USAID MCH and Malaria 
funding increased in treatment countries over time rela-
tive to control countries, consistent with increasing size 
of the treatment effect in the main analysis, whereas the 
opposite was true of Net ODA or total health expendi-
tures (see Additional file 1: Section S2.9).

S2.9 Restricting countries in the donor pool to those receiving 
fewer years of USAID funding
The donor pool in the main analysis is restricted to coun-
tries with less than 8 years of funding during the 18-year 
treatment period. This was done to prevent an overly 
small ‘n’ of countries leading to a potential ‘beta error’ 
of failing to statistically detect a true treatment effect. In 
this step, we check the results of carrying out the syn-
thetic control method using more stringent restrictions: 
(1) countries with less than four years of USAID funding 
in the treatment period; and (2) countries with no USAID 
funding during the treatment period. In this check, we 
find similar treatment effects as the main analysis. In 
retrospect, this is not surprising as only two of the eight 
countries with positive weight that constitute the syn-
thetic control received any USAID funding during the 
treatment period. Further, these two countries consti-
tuted only a total of 11% to the weight of the synthetic 
control.
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S10. Repeated random assignment of eight countries 
in the donor pool into single control units for calculating 
alternative treatment effects and placebo testing
In the main analysis, the treatment unit is a grouped 
average of the eight Quadrant 1 treatment countries. The 
placebo test in the main analysis uses the 48 individual 
countries in the donor pool for placebo testing. In this 
sensitivity analysis, we created groups of eight countries 
each from those in the donor pool to act as placebos, 
matching the way that the eight treatment countries were 
grouped to create a single treatment unit in the main 
analysis. This was done to make the donor units used 
in the placebo testing more comparable to the grouped 
treatment unit. The 48 countries in the donor pool were 
randomly assigned to 48 grouped donor units of eight 
countries each. The treatment effects of this sensitivity 
analysis were consistent with the main analysis, but with 
a lower treatment effect size (− 19/1000 vs. − 29/1000). 
Standardized p-values from the grouped placebo testing 
were all significant (p < 0.001).

S11. Results of a difference‑in‑difference analysis using 
the same donor pool and treatment units used in the main 
analysis
This check was used to compare findings using a differ-
ent, but commonly used analytic approach. A difference-
in-difference analysis was carried out using the same 
eight treatment countries and the same donor pool as the 
main analysis using a Poisson regression model for the 
U5MR outcome variable. The outcome of the model sup-
ports the main analysis. Being one of the eight treatment 
countries equals, on average, a decrease of 2.6% in U5MR 
more per year in the treatment period as compared to a 
control country.

Discussion
Although considered the gold standard evaluation 
method for drawing inferences about causality, pro-
spective, randomized trials are often not practical for 
evaluation of most large-scale public health programs 
in low- and middle-income countries. Another program 
may be scaling up across a country at the same time. Or, 
similar programs, other than the one being evaluated, 
may be ongoing or completed in areas that would need 
to be part of a control. For these reasons, observational 
studies are commonly used for evaluating large-scale 
public health programs. To draw inferences from obser-
vational studies, however, steps must be taken to mini-
mize potential biases. One common step to minimize 
bias in observational studies is the provision of a coun-
terfactual through use of modeled controls or compari-
son units. This is done to simulate or model the change 

in the outcome variable that would have occurred in the 
absence of the intervention or treatment.

The synthetic control method provides a novel 
approach that uses a data-driven (unbiased) method 
to construct a counterfactual or control by creating a 
weighted average of the outcome variable from units in a 
donor pool that are most similar to the treatment unit(s). 
The synthetic control method then models the continu-
ation of the trend of the pre-intervention period in both 
a separate treatment unit and a manufactured control 
unit [38]. The two trends are then compared. The differ-
ence between the synthetic control trend and the trend of 
the treated units is considered the treatment effect and 
this difference is tested for statistical significance using 
placebo tests or other methods. Another advantage of 
the synthetic control method is its ability to account for 
unobserved time-varying confounders that may influ-
ence the outcome variable, an advantage that other key 
inferential methods for analyzing observational data, 
such as the ‘difference-in-difference’ approach, do not 
have [38]. In addition, model testing procedures (placebo 
testing) allow the analyst to assess whether or not the 
control units provide an adequate counterfactual to the 
treatment or intervention unit(s) [15]. More traditional 
approaches (e.g., regression) were not considered for this 
analysis as these approaches do not provide sufficient 
methods to provide an unbiased selection of counterfac-
tual countries, or easily allow differential weighting and 
contribution from the donor pool of countries.

The results of this synthetic control analysis provide a 
quantitative estimate of the impact on under-five mor-
tality, on average, of USAID investments focused on 
child health among countries with relatively high levels 
of USAID investment (the treatment group) during the 
treatment period (2000–16): annual nominal funding of 
at least $32.5 M and $1.19 per capita. This period coin-
cides with the World Health Organization’s initiative to 
accelerate reductions in child mortality, called the Inte-
grated Management of Childhood Illness (IMCI) among 
others [39]. In the main analysis, the under-five mortality 
rate was more than 20 per 1000 live births lower, on aver-
age, in the treatment group as compared to the synthetic 
control (mean = 29, range 2–38). The difference is statis-
tically significant (one tailed, p < 0.01). All 11 sensitivity 
analyses were supportive of the main findings, although 
estimates of size of the treatment effect varied. The mean 
treatment effect on U5MR across seven sensitivity anal-
yses, using Quadrant 1 countries as the treatment unit, 
was statistically significant and ranged from − 17 to − 28 
with an average of − 23 (see Additional file 1: Section S2). 
Most gains were achieved across these analyses in a 5-to-
6-year period from the start, with some analyses leveling 
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off and some analyses showing an increased treatment 
effect after that.

The inference that USAID investments have a posi-
tive impact on under-five mortality, under the condi-
tions described above, is supported by placebo testing 
used to check the model used in this analysis, as well 
as several sensitivity analyses (see Additional file  1). 
For example, one sensitivity analysis (see Additional 
file  1: Section S2.2) with the treatment unit made up 
of countries with a relatively low but consistent level of 
USAID investments in child health also found signifi-
cant, positive impacts on under-five mortality. Another 
sensitivity analysis (Additional file  1: Section S2.8) 
found that relative increases in USAID funding over 
time in the treatment period went along with increases 
in the size of the treatment effect. These findings 
are consistent with a dose–response effect of USAID 
investments in child health—that greater investment 
is associated with a greater treatment effect—lending 
additional support for a causal relationship.

There is currently insufficient information available 
about contextual factors and program implementa-
tion across the countries with USAID child health pro-
grams, nor comparable health indicators of coverage, 
impact, and cost, that would allow a better understand-
ing the relative contribution of program interventions 
and context to the impact quantified in this analysis, 
as argued by Bryce et al. and Victora et al. [9–11]. As 
noted in the Introduction, this is the hope and desire 
for the future of program evaluation in low- and mid-
dle-income countries. The authors’ hypothesis, con-
sistent with the high-level theory of change described 
above, is that a combination of the following types of 
USAID investments in child health contributed to the 
impact quantified in the analysis: (1) capacity building 
and health promotion around evidence-based inter-
ventions for reducing child mortality; (2) encouraging 
stakeholders to be engaged in scaling up and improv-
ing quality of these evidence-based interventions, 
including policy change; and, (3) facilitating the devel-
opment of evidence for interventions that prevent 
child deaths, and for effective implementation of these 
interventions. While this analysis cannot identify the 
relative contribution of these approaches, we believe 
that substantial USAID maternal and child health and 
malaria investments led to countries adopting IMCI 
and other evidence-based MCH interventions earlier 
and at a higher level of intensity, scale and quality than 
would have happened without such investments. This 
assumption is supported when looking at the treat-
ment effects by individual country that make up the 
treated units. The two countries with the largest dif-
ference between its trend in under-five mortality and 

the trend of that country’s synthetic control (Uganda, 
Zambia) are countries that initiated IMCI earlier and 
were already at the expansion phase by June 1999 [20]. 
(See Additional file 1: Figs. S2.4g and S2.4h). It is also 
important to remember that net per capita foreign aid 
in the pre-intervention period, among other likely con-
founders, was controlled for in the SCA.

Limitations
One limitation of the SCA method is that it does not 
control for potential confounding variables during the 
treatment period. It is possible that some other fac-
tor appeared in treatment countries after 1999 besides 
significant USAID MCH and malaria investments and 
national implementation of IMCI that contributed to the 
observed results. Arguing against this is the strong match 
between the treatment unit and synthetic control in a 
long pre-intervention period, the long-standing USAID 
engagement with many of the treatment countries, and 
the close correlation between the introduction of IMCI 
and the MDGs, and the treatment initiation year. A sen-
sitivity analysis (Additional file 1: Section S2.6) tested the 
timing of the treatment initiation year and did not find 
evidence for an earlier treatment initiation year. A related 
issue is that the treatment period is long (2000–16) 
increasing the potential for confounding (differential cri-
ses or changes in health expenditures between the treat-
ment and the control countries). The issue of crises is 
discussed below. A sensitivity analysis comparing health 
expenditures between treatment countries and control 
was carried out and did not identify any advantages for 
the treatment countries outside of the theory of change 
(see Additional file 1: Section S2.8). One approach to the 
possibility of unmeasured, untested confounders during a 
long treatment period would be to give more inferential 
weight to the treatment effects observed in the first ‘X’ 
years of the treatment period and less weight to the later 
years (the right tail of the analysis) despite the statistical 
uncertainty intervals provided.

A substantial number of countries that received USAID 
funding during some years of the treatment period (but 
less than nine) were included in the control donor pool to 
maximize the size of potential controls. While excluding 
these countries was the preferred choice in the construc-
tion of a counterfactual, the investigators were initially 
concerned that excluding these countries would result in 
a donor pool too small to find enough countries compa-
rable to the eight treatment countries on other measures 
used as predictors. To check this potential limitation in 
the makeup of the donor pool, a sensitivity SCA analy-
sis (Additional file 1: Section S2.9) was performed on (a) 
countries in the original donor pool with less than four 
years of USAID funding and (b) countries in the original 
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donor pool with no USAID funding. The results of both 
checks were consistent with the main analysis under both 
scenarios lending strength to the counterfactual used in 
the main analysis.

One particular SCA assumption relevant to many 
countries in the analysis is the absence of ‘shocks’ that 
might differentially affect the outcome variable—in this 
case child mortality rates—between the treated units and 
the countries making up the donor pool [38]. Such shocks 
might include governance crises, wars, pandemics, or 
natural disasters. However, the countries in quadrant 1 
that make up the Treatment Unit did not experience sub-
stantial country-wide shocks in U5MR in the interven-
tion period [27]. Countries that received considerable 
USAID funding and experienced considerable shocks in 
U5MR during the treatment period [27], and that were 
not included as treatment countries in the analysis (Haiti, 
Burma, and Indonesia), were also excluded from the 
donor pool because they did not get 16 continuous years 
of USAID funding or meet the other inclusion criteria. In 
addition, the source of the outcome variable, under-five 
mortality, is UN IGME that includes adjustments for cri-
sis mortality in its modeled estimates [27].

The synthetic control method assumes an adequate 
fit between the treatment unit(s) and the synthetic con-
trol in the pre-intervention period and that the potential 
comparison units in the donor pool are similar to the 
treated unit(s) [38]. There is evidence that the pre-inter-
vention fit in this analysis more than meets the standard 
(RMPSE ≤ 3) [17]. It is unlikely that the pre-intervention 
fit would be this good, if the treated units were not simi-
lar to the units making up the donor pool. We controlled 
for confounding for many cross-national differences by 
requiring that the synthetic control match the treatment 
unit on a broad range of criteria in a long pre-interven-
tion period, including indicators of governance, health 
system strength, disease burden and GDP per capita. A 
difference in the pre-intervention period between the 
treatment and synthetic control groups was identified 
for the following predictor variables: the DPT3 immu-
nization rate and HIV prevalence. The countries which 
were selected as the treatment unit, therefore, may have 
had stronger health systems, but also would have had a 
greater HIV burden putting pressure on these systems 
as compared to the countries that comprised the syn-
thetic control—after unbiased selection using RMSPE 
minimization criteria. The possible contributions of these 
initial differences during the post-intervention period 
are unclear. The former may have helped reduce U5MR 
while the latter may have blunted reductions. In the end, 
these differences did not affect U5MR trajectory during 
the pre-intervention period. The higher HIV prevalence 
may also have attracted greater health system investment 

under well-financed HIV programs (e.g., the US Presi-
dent’s Emergency Plan for AIDS Relief or PEPFAR), 
although PEPFAR was enacted in 2004 and the figures 
show the greatest year-over-year drop in U5MR occur-
ring in the years prior to that. Nevertheless, it remains 
possible that some other important characteristics were 
not included in this analysis that may have contributed to 
their differential trajectories during the treatment period. 
However, the placebo control analysis provides some 
additional evidence against this.

We were also limited in this analysis by the types of 
available data. For example, we used the polity score as 
an indicator of governance environment because it was 
available for every country since 1980, whereas the World 
Bank’s governance effectiveness and political stability 
indices only became available in 1996. ‘Cherry-picking’ 
models to favor a particular outcome is a concern in 
SCA; we avoided this by using RMSPE as our unbiased 
criteria for selecting models [40].

Conclusions
Synthetic control analysis (SCA) is a valuable addition to 
a range of approaches for quantifying the impact of donor 
programs, and for making causal inferences about the 
results of population level health interventions, in gen-
eral, when a randomized trial is impractical. It has certain 
advantages over other more widely used approaches and 
is one of a small number of methods that may control 
for unmeasured time-varying confounders. Wider use 
of SCA, along with its dissemination and critique, will 
help to develop a better understanding of its strengths 
and limitations and optimal conditions for use [38]. The 
authors welcome additional attempts to replicate, publish 
and critique this approach.

Not unexpectedly, donor investments that complement 
host government child health programs appear to signifi-
cantly accelerate reductions in under-five mortality when 
those investments are substantial in absolute amounts 
and per capita. A reasonable estimate of the U5MR in a 
country with high levels of USAID investment in mater-
nal and child health and malaria is between 17 and 28 
deaths per 1000 live births lower, after about 5  years of 
investment, than the same country would have experi-
enced without this level of investment. Given the review 
of common USAID activities and approaches during the 
period of analysis, we hypothesize that a combination 
of the following catalytic approaches contributed to the 
observed impact, although the relative contributions 
of each cannot be assessed here: capacity building and 
community health promotion around evidence-based 
interventions; encouraging stakeholders to be engaged in 
scaling up and improving quality of these interventions; 
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and facilitating intervention and implementation 
research in support of intervention scale and quality.
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