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Abstract 

Background Life expectancy is a simple measure of assessing health differences between two or more populations 
but current life expectancy calculations are not reliable for small populations. A potential solution to this is to borrow 
strength from larger populations from the same source, but this has not formally been investigated.

Methods Using data on 451,222 individuals from the Clinical Practice Research Datalink on the presence/absence 
of intellectual disability and type 2 diabetes mellitus, we compared stratified and combined flexible parametric 
models, and Chiang’s methods, for calculating life expectancy. Confidence intervals were calculated using the Delta 
method, Chiang’s adjusted life table approach and bootstrapping.

Results The flexible parametric models allowed calculation of life expectancy by exact age and beyond traditional 
life expectancy age thresholds. The combined model that fit age interaction effects as a spline term provided less bias 
and greater statistical precision for small covariate subgroups by borrowing strength from the larger subgroups. How-
ever, careful consideration of the distribution of events in the smallest group was needed.

Conclusions Life expectancy is a simple measure to compare health differences between populations. The use 
of combined flexible parametric methods to calculate life expectancy in small samples has shown promising results 
by allowing life expectancy to be modelled by exact age, greater statistical precision, less bias and prediction of differ-
ent covariate patterns without stratification. We recommend further investigation of their application for both policy-
makers and researchers.

Keywords Life expectancy, Epidemiology, Flexible parametric methods, Electronic health records, Chiang, 
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Background
Government and policymakers across the world are com-
mitted to reducing health disparities in the most vulner-
able, including people living in deprived areas, the elderly 

and people with disabilities [1, 2]. A key indicator of 
health is mortality, and it is often advantageous to use life 
expectancy to compare differences in survival between 
populations.

One of the limitations of many of the methods used 
to calculate life expectancy is that they are known to 
be inaccurate for small populations. For example, the 
Chiang’s abridged life table approach [3, 4] used by the 
Office for National Statistics in the UK [5], and simi-
lar approaches, such as those proposed by Silcocks and 
colleagues [6], require the relevant sub-populations to 
be stratified before comparisons can be made. Because 
of this, sub-populations with fewer than 5000 person-
years are not recommended [7]. These methods also 

*Correspondence:
Freya Tyrer
fct2@le.ac.uk
1 Biostatistics Research Group, Department of Population Health 
Sciences, George Davies Centre, University of Leicester, University Road, 
Leicester LE1 7RH, UK
2 Leicester Real World Evidence Unit, Diabetes Research Centre, University 
of Leicester, Leicester, UK
3 Department of Medical Epidemiology and Biostatistics, Karolinska 
Institutet, Stockholm, Sweden

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12963-023-00313-x&domain=pdf


Page 2 of 10Tyrer et al. Population Health Metrics           (2023) 21:13 

require splitting ages into groups (usually 5-year inter-
vals [7]) and creating an open-ended final age group 
(e.g. 80+ years) in which one death has to occur for the 
life expectancy calculation to work. Where numbers 
are small or in sub-populations that are vulnerable to 
premature mortality, this final age group may need to 
start relatively young thereby assuming similar risk 
profiles across older ages in the comparison population, 
which may not be sensible. While other approaches, 
such as Bayesian random effects models to extrapolate 
information from different areas/regions, have been 
proposed as a way of dealing with small populations [8], 
they have not been routinely adopted by researchers or 
policymakers.

For this work, we investigated the use of flexible par-
ametric methods to calculate life expectancy in small 
populations. We described and compared life expec-
tancy using individual-level censored data from a real-life 
case study from the Clinical Practice Research Datalink 
(CPRD) and linked mortality data for the general popula-
tion and people with intellectual disabilities, stratified by 
Type 2 diabetes mellitus (T2DM) status.

Methods
Overview of survival analyses and flexible parametric 
methods
A glossary of terms for this work is provided in Additional 
File 1 (Table S1). Survival, or time-to-event, analyses are 
commonly used in epidemiological research because they 
consider the time it takes to develop a given event. This is 
important to establish whether some groups of individu-
als die earlier than others. Nearly all survival approaches 
involve analysing survival in the presence of censored 
data [9] whereby individuals are (right) censored if they 
do not have the event but can no longer be followed up.

Depending on the research question of interest, dif-
ferent functions are used to model the data distribution 
in time-to-event analyses. Perhaps the most common 
of these is the hazard function, h(t) , which is defined as 
the rate of failure between t and �t (i.e. a miniscule time 
period; � → 0 ), conditional on the individual not expe-
riencing the event of interest by time t . The cumulative 
hazard function, H(t) , is the integral of the hazard func-
tion, h(t), over the entire distribution of t (i.e. time 0 and 
time t ) for which the baseline formula is given below.

Another common function used in time-to-event 
analyses is the survival function, S(t), which is the prob-
ability that an individual will survive beyond time S(t) , 

H0(t) =
t

∫
o

h0(u)du

Pr(T > t) . It has a relationship with the cumulative haz-
ard function, as below:

where xiβ represents the linear predictor, β the log hazard 
ratios and xi the covariate values for the ith individual.

There are three main approaches to analysing survival 
data: Non-parametric; semi-parametric (e.g. Cox pro-
portional hazards model [10]); and parametric. Non-
parametric and semi-parametric methods allow baseline 
hazard functions to vary freely, which means that they 
make no assumptions about the shape of the underlying 
hazard or death rate. Parametric methods specify a para-
metric form for the (cumulative) baseline hazard func-
tion, which can be useful for precision but they also come 
with constraints in terms of their ability to model fluctua-
tions in the data over time, in particular turning points.

Flexible parametric methods, first introduced in 2002 
[13] and extended further in 2009 [14], allow a paramet-
ric form to be specified for the baseline hazard func-
tion but also use restricted cubic splines to flexibly and 
smoothly capture the shape of the baseline log (cumu-
lative) hazard function over time. The use of splines to 
estimate mortality rates is well-recognised in the actu-
arial and demography literature [11, 12] and is increas-
ingly used by epidemiologists and statisticians [15]. For 
flexible parametric models, the spline function is defined 
by constrained cubic polynomial functions forced to 
join at a pre-selected number of joining points, called 
knots, which equate to the degree of complexity, often 
expressed as degrees of freedom. Knots are usually 
spaced equally as percentiles across the distribution of 
event times, and the splines are constrained to be linear 
beyond the boundary knots (i.e. at the extremes of the 
curve). For example, the default knot placement for flex-
ible parametric methods in the statistical package Stata 
(‘stpm2’) [14, 16] for four degrees of freedom is at the 0th, 
25th, 50th, 75th and 100th percentile of the event distri-
bution for a specific population. In this study, we used 
age as the timescale of interest as this is a natural choice 
for life expectancy calculations and aligns with previous 
research in this area [17–20]. The knots were, therefore, 
placed according to the distributions of age at death in 
the study population.

Calculation of life expectancy using flexible parametric 
methods
More details of the survival function for flexible para-
metric methods and Stata code (v16.0) for calculating 
life expectancy are shown in the supplementary material 
(Additional file 1: Box S1 and S2).

S(t|xi) = exp(−H0(t) exp (xiβ) = exp (−Hi(t))
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Additional years expected to live from a given age, a
, to a maximum age, w, can be estimated fitting a flex-
ible parametric model and integrating under the survival 
function curve (i.e. calculating the area under the curve) 
to age w , scaled by the survival function (i.e. proportion 
live) at age a using the formula below.

This can be approximated using numerical integration 
techniques in statistical software.

The example in Fig.  1 illustrates how life expectancy 
of people aged 40 years in a given population can be cal-
culated using flexible parametric methods. The figure 
shows the survival function for all ages after fitting a flex-
ible parametric model with 4 degrees of freedom using 
age as the time scale. We can see that the survival func-
tion at age 40 years, denoted by the horizontal red line, is 
0.9879. Therefore, the additional years expected to live is 
the integral of the survival function from 40 to the maxi-
mum age ( w = 110 years), conditional on surviving to this 
age. The area under the curve is 41.96  years. Therefore, 
people aged 40  years in this population can expect, on 
average, to live for an additional 42.5 years and have an 
overall average life expectancy of 82.5 years.

A period life expectancy estimate is given in a similar 
way to Chiang’s methods [3, 4], by combining the current 
age-specific rates of mortality in the most recent calendar 

w

a

S(t)dt

S(a)

year to calculate life expectancy. Parametric models 
are particularly good for this as we are able to model a 
smooth representation across age, borrowing strength 
accordingly.

The theoretical advantages of flexible parametric meth-
ods over traditional life expectancy approaches include 
the modelling of life expectancy with greater statistical 
precision because fewer parameters are used. For exam-
ple, taking 5-year-age groups from birth to 75+ years 
would require 16 parameters under the Chiang approach 
as compared with the five parameters described in the 
example. The methods also allow age to be modelled 
by exact age, which means that individual-level average 
risk can be estimated, and there are not the same age 
restrictions at the tail of the distribution because age is 
not truncated. Flexible parametric approaches also have 
the potential to allow prediction for different covariate 
patterns by modelling age-varying effects (i.e. allowing 
the proportional differences between the covariates to 
change across different ages) using interaction terms by 
the covariates and spline variables for age [21].

Data sources
The case example for this work used individual-level 
censored data from the Clinical Practice Research Data-
link (CPRD GOLD), linked (person-level) with hospi-
tal episode statistics (HES) and death registrations from 
the Office for National Statistics (approved study pro-
tocol number: 19_267RA3). The CPRD is an electronic 

Fig. 1 Illustration of how average life expectancy in people aged 40 years is calculated from the survival function of a flexible parametric model
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health record research database of more than 11.3 mil-
lion patients, broadly representative of the national pop-
ulation in terms of age, gender and ethnicity [22], from 
general practice (GP) surgeries in the UK. The study com-
prised GP surgeries in England only—of which approxi-
mately 75% consent to linkage to deaths data. Under the 
UK healthcare system, most individuals are registered 
with a general practitioner (primary care physician) and 
use them as the first point of contact for health problems.

The study followed the Reporting of studies Conducted 
using Observational Routinely‐collected health Data 
(RECORD) checklist [23] (see Additional file 1: Table S2). 
People with intellectual disabilities were identified from 
a pre-agreed set of primary care Read codes and has 
been described in previous research (see Additional 
file 1: Table S2) [24]. Diagnostic codes for Type 2 diabe-
tes were identified using previous literature [25] and are 
described in Additional file 1: Table S3. The initial extract 
from the CPRD has been described previously [24] and 
was based on the following inclusion criteria: Registered 
at the GP surgery between 1 Jan 2000 and 29 Sept 2019, 
and 10 years old or over to account for delays in report-
ing of diagnoses of intellectual disability in children [26]. 
An additional 23 patients with Angelman or Cockayne 
syndrome were added in August 2021 after an amend-
ment to the original protocol (approved March 2020 but 
delayed during the COVID period). A simple random 
sample of people without intellectual disabilities (initially 
1 million from 2000 to 2019 before exclusions) was used 
for the comparison group with the same eligibility crite-
ria (but without a diagnosis of intellectual disability).

Statistical analyses
For the purposes of this work and to align with stand-
ard period life expectancy calculations, we restricted 
the observation time to a 1-year period (2012) (i.e. 
person-time only contributed to this calendar year). 
Date of entry into the cohort was defined as the latest 
date according to the person and GP surgery’s charac-
teristics: 01 Jan 2012; date of registration with the GP 
surgery; date the GP surgery was defined as being up 
to standard for research purposes (using the CPRD’s 
own quality indicators); or date the individual turned 
10  years old (to align with the eligibility criteria). 
Because there are known delays in reporting intellec-
tual disability diagnoses [27] and to avoid conditioning 
on the future, intellectual disability status was treated 
as an age-dependent covariate such that people with 
intellectual disabilities contributed to the comparison 
cohort prior to their first diagnosis. T2DM status was 
also allowed to change during the observation period. 
Date of exit was defined as: Date of death; date of end 
of calendar period; date of last GP surgery update; date 

the individual left the GP surgery; or 31 Dec 2012, 
whichever was first. For T2DM, the baseline measure 
at 2012 was taken; people in the cohort who devel-
oped T2DM after 1 January 2012 were treated as being 
T2DM-free during the entire 1-year period.

Table  1 summarises the models compared. We esti-
mated life expectancy and 95% confidence intervals 
by intellectual disability and T2DM status using: Fully 
stratified models (Method 1: Fully stratified); with intel-
lectual disability stratified but T2DM as an age-varying 
covariate (Method 2: Partially stratified); and for the 
entire population with both T2DM and intellectual dis-
ability as age-varying covariates, also fitting an interac-
tion term (Method 3: Full model). Follow-up started from 
adulthood (age 20+ years) because T2DM is known to 
be relatively uncommon in younger ages [28], and life 
expectancy was reported for people aged 40+ years only. 
The models were also compared with Chiang’s abridged 
life table approach, stratified by intellectual disability and 
T2DM status.

For the flexible parametric models, life expectancy esti-
mates and confidence intervals were calculated using the 
Delta method after fitting models with 4 degrees of free-
dom using ‘stpm2’ in Stata (v16.0) [16]. We chose not to 
use the default knot placements (0th, 25th, 50th, 75th and 
100th percentile) for this work (with age as the timescale) 

Table 1 Summary of flexible parametric methods used to 
estimate life expectancy in people with and without intellectual 
disabilities and T2DM

Name of method Approach to analysis

Method 1: Fully stratified Four individual models for:
(a) Intellectual disabilities and T2DM
(b) intellectual disabilities 
and no T2DM
(c) no intellectual disabilities 
and T2DM
(d) no intellectual disabilities 
and no T2DM

Method 2: Partially stratified Two individual models for:
(a) Intellectual disabilities
(b) no intellectual disabilities
Interaction between T2DM and age 
modelled

Method 3: Full model One model of entire sample popula-
tion
Interaction between age and intel-
lectual disability and T2DM 
modelled

Method 4: Full model 
with adapted knots

One model of entire sample 
population, but with knots forced 
to intellectual disability sample (i.e. 
minority group)
Interaction between age and intel-
lectual disability and T2DM 
modelled
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owing to the sparsity of events at the tails of the distri-
butions. Instead, we chose to use the knot placements 
‘where data exist’ recommended by Harrell [29] at the 
5th, 27.5th, 50th, 72.5th and 95th percentile. However, 
as a sensitivity analysis, we repeated the analyses using 
the default knots for the models. We also calculated life 
expectancy in the entire population after forcing knot 
placements to match the event distribution in the intel-
lectual disability population (Methods 4: Full model with 
adapted knots)—see Table 1. The variance of the estimate 
of life expectancy was calculated on the log scale in order 
to stabilise the variance and avoid negative confidence 
intervals.

For older individuals with intellectual disabilities with/
without T2DM, sample sizes could become very small. 
Therefore, confidence intervals were also compared with 
percentile-based bootstrapped confidence intervals in 
people aged 80–99  years. As an additional validation of 
the confidence intervals derived from the model, these 
were compared with both percentile-based and normal-
based confidence intervals after bootstrapping in the 
larger sample without intellectual disabilities at the older 
ages (95–105 years).

For the Chiang’s abridged life table approach, confi-
dence intervals were calculated using the adjusted Chi-
ang approach advocated by Eayres and Williams [7], 
which involves adding a correction term to the original 
Chiang variance to incorporate length of survival in the 
last age group [30]. When calculating life expectancies in 
small populations, Chiang’s methods with the adjusted 
variance are recommended over Silcocks’ methods [7].

To assess the performance of the fully stratified FPM 
approach (Method 1) compared to the model borrowing 
strength from the larger covariate groupings (full model, 
Method 3), we conducted a small simulation study using 
the CPRD data as the basis for the data generation. In 
order to generate data across 1000 simulation replica-
tions, we fitted a stratified Gompertz model [31, 32] to 
each of the 4 groupings of covariate profile detailed in 
Table  1 (a–d) with age as the timescale and took these 
to be our true values. We generated the simulated sur-
vival times using the approach described by Bender et al. 
[33]. A multinomial logistic regression was fitted to the 
data to obtain estimates of the proportions in each of the 
4 groupings and separate regression models for age at 
study entry in each of the 4 groupings using the approach 
described by Smith et  al. [34] to recreate continuous 
covariate distributions through a regression with splines 
based on an inverse-normal-rank-based-transformation. 
The parameter estimates from these set of statistical 
models were used to repeatedly generate replications of 
the whole cohort with the same follow-up restrictions 
as the main study using the exact sample size observed 

in the original cohort (N = 453,091—including the 1871 
individuals who changed T2DM status during the obser-
vation window). These replications, therefore, differed 
in covariate distribution (age and population subgroup) 
and survival time values/event indicator, but were based 
on the parameter estimates above, leading to the same 
degree of sparsity for group (a) [intellectual disability and 
T2DM] particularly.

We then fitted Method 1 and Method 3 to each of the 
1000 simulated datasets to compare the stratified and 
full models against the true value for the life expectancy 
according to the known parameters for the Gompertz 
distribution. Only estimates where both models con-
verged were compared. We focused on prediction for the 
smallest group (group a) at older ages because this group 
had the smallest sample size. As the simulation was based 
on the sample data for 2012, which may have been differ-
ent from the true shape of the distributions in this CPRD 
study, we also repeated the simulation exercise in an 
extended sample 2 years either side to include data over a 
5-year period from 1 January 2010 to 31 December 2014.

Results
The population in 2012 comprised 16,904 individu-
als with intellectual disabilities (n = 1006 with T2DM) 
and 434,318 people without intellectual disabilities 
(n = 23,381 with T2DM). The characteristics of the study 
population are shown in  Table 2.

Life expectancy by intellectual disability and T2DM status
Figure 2a–d shows the findings using flexible parametric 
methods for four-way stratification by intellectual dis-
ability and T2DM status (Method 1: Fully stratified), with 
T2DM as an age-varying covariate (Method 2: Partially 
stratified) and the full model (Method 3: Full model). 
There are only 761.3 person-years (22 deaths) in the 
cohort of people with both intellectual disabilities and 
T2DM and this is reflected in the fully stratified flexible 
parametric model (Fig.  2a; solid line) where confidence 
intervals are wide, particularly in the older age groups 
where numbers are small. For this model and Chiang’s, 
which also involves stratification, there is an appar-
ent improvement in life expectancy between the ages of 
80–84 years. We can also see that the confidence intervals 
for the group with intellectual disabilities and T2DM are 
relatively narrow under the Chiang’s approach (Fig.  2a) 
because the final age group has been combined. This is 
not ideal given the small sample size (11.9 person years 
and only 1 death). We can also see that statistical preci-
sion is slightly better in the age-varying flexible paramet-
ric models for the younger age groups, most noticeably 
in the first model with the smallest sample size (Fig. 2a) 
because fewer parameters are required in the models. As 
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before, however, the confidence intervals become wider 
in the full model (Method 3: Full model) for both intellec-
tual disability samples (Fig. 2a, b; see shaded area). This 
was even more apparent in the sensitivity analysis where 
knots were placed at the 0, 25th, 50th, 75th and 100th 
percentile (Additional file 1: Figure S5).

The placement of knots is, again, a key consideration 
for these models as they are placed at younger ages in the 
stratified intellectual disability populations (20.8–81.8 years 
vs 42.4–87.0 years) because the event distribution is much 
flatter than the left-skewed distribution observed in both of 
the groups without intellectual disabilities. By forcing the 
knots to match the event distribution of the intellectual dis-
ability population, we can see that the life expectancy esti-
mates are a closer fit to the actual data (Fig. 3a, b; shaded 
area). Once knot placements have been considered, the 
combined flexible parametric methods allow strength to be 
borrowed from other covariate samples and are, therefore, 
likely to give a better overall estimate.

Results from bootstrapping the point estimates for life 
expectancy revealed slightly wider confidence intervals 
for people with intellectual disabilities and T2DM, par-
ticularly in the fully stratified sample, where numbers are 
very small (see Additional file 1: Figure S1–S3). Given that 
bootstrapped confidence intervals can be too optimistic 
for small samples [35], the more conservative confidence 
intervals produced by the flexible parametric models may 
be more accurate. Alternative ways to deal with small 
sample size are considered in the discussion. The percen-
tile-based confidence intervals produced by bootstrapping 
showed a similar match to the sample as the normal-
based confidence intervals and did not allow lower confi-
dence limits to go below zero (see Additional file 1: Figure 
S4). The simulation study showed a lower risk of bias and 
less variability using the full model as compared with the 
stratified model for the 2012 and 2010–2014 sample, but 
that some bias remained mostly towards improved life 
expectancy compared to the true (Gompertz) value (see 
Additional file 1: Figures S7 and S8).

Discussion
Expectation of life is a simple measure to compare health 
differences between populations and is often concep-
tually easier to visualise than other differential mortal-
ity comparisons, such as hazard ratios or standardised 
mortality ratios. This study demonstrates that flexible 
parametric methods can provide a useful alternative to 
traditional life table approaches for small populations 
and have potential applications for both policymakers 
and researchers.

The limitations of using flexible parametric methods 
include the need for statistical software to derive the 
life expectancy estimates as compared with traditional 
methods that can be done using a spreadsheet. Stata 
(v16) was used for this work (code shown in the Addi-
tional file  1: Box S2), but the methods can be used in 
other statistical packages such as R (‘rstpm2’). We also 
found that the placement of knots for the restricted 
cubic splines helped to maximise fit of the data, but we 
recognise that this could lead to ‘over-fitting’, thereby 
limiting the model’s ability to predict future life expec-
tancies reliably. We recommend looking at the distri-
bution of deaths at different ages for each stratified 
covariate prior to conducting life expectancy calcula-
tions. We also acknowledge that the predictive ability of 
the models was less reliable at the tails of the distribu-
tion where the population sizes were smaller, but this 
issue is not restricted to flexible parametric methods and 
also applies to other life expectancy estimators [7]. In 
the older age groups, the sample size could be extremely 
small. While the fully stratified model showed a bet-
ter fit to the actual data, deaths in a few individuals are 

Table 2 Characteristics of 2012 sample population used for the 
analysis

a Includes 553 individuals from the intellectual disability sample who changed 
status (i.e. had their first intellectual disability diagnosis) during the observation 
window and a further 1339 individuals who were registered but had their first 
intellectual disability diagnosis outside the window (i.e. after 2012)
b Individuals entered the cohort on 01/01/2012 or sometime during 2012 if 
registered or changed status during the observation period
c Includes 1871 individuals who changed T2DM status (i.e. had a T2DM 
diagnosis) during the observation window

Characteristic Intellectual 
disabilities N (%)/
Median (range)

No intellectual 
disabilities N (%)/
Median (range)

Total 16,904 (100.0) 434,318a (100.0)

Age (at  baselineb) 36.0 (10–100) 44.0 (10–109)

Gender

 Male 9,451 (55.9) 213,678 (49.2)

 Female 7,453 (44.1) 220,640 (50.8)

Ethnicity

 White 12,796 (75.7) 297,320 (68.5)

 South Asian 459 (2.7) 15,425 (3.6)

 Black 374 (2.2) 11,257 (2.6)

 Other 456 (2.7) 16,428 (3.8)

 Not known 2819 (16.7) 93,888 (21.6)

Type 2  diabetesc

 Present 1006 (6.0) 23,381 (5.4)

 Died 193 (1.1) 4296 (1.0)

Most common genetic syndromes

 Down syndrome 2049 (12.1)

 Fragile X syndrome 323 (1.9)

 Tuberous sclerosis 158 (0.9)

 William syndrome 70 (0.4)

 Prader-Willi syndrome 61 (0.4)
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unlikely to be a genuine reflection of what is actually 
happening. Therefore, borrowing strength from larger 
covariate samples through age-varying models is likely 
to be more sensible. For very rare covariate patterns, it 
may be preferable to increase the observation window to 
two or more years and splitting risk time accordingly, as 
a trade-off against recency effects.

We also only present findings from the age of 40 years 
because it was challenging to identify a long-term condi-
tion that was present from birth and sufficiently preva-
lent in people with and without intellectual disabilities. 

The models for intellectual disabilities from age 10 years 
closely followed the non-parametric alternative of Chi-
ang’s abridged life table approach (see Additional file  1: 
Figure S6), but we did not collect information prior to 
10 years where differential mortality is likely to have been 
greater.

We have shown that there are advantages to using 
flexible parametric methods for life expectancy esti-
mations of sparse data. Parametric models are also 
appropriate for larger sample sizes by acting in a simi-
lar way to Poisson regression, but without the need to 

Fig. 2 Comparison between flexible parametric  methodsab and Chiang’s abridged life  tablecd for estimating life expectancy in small populations ID: 
Intellectual disability; T2DM: Type 2 diabetes mellitus; CI confidence interval; TVC = age-varying covariate knots. aKnot placements (years): Method 
1: Fully stratified: ID & T2DM: 36.8, 53.4, 64.5, 67.9, 75.1; ID & No T2DM: 24.4, 42.5, 55.0, 63.4, 82.3; No ID & T2DM: 50.5, 66.6, 72.8, 77.2, 84.9; No ID & No 
T2DM: 40.7, 64.8, 73.8, 79.5, 87.4]; Method 2: Partially stratified: ID: 27.0, 43.5, 55.3, 65.0, 81.8 [TVC 47.0, 63.7]; No ID: 42.8, 65.3, 73.5, 79.1, 87.0 [TVC 
67.8, 77.9]]; Method 3: Full model: 40.7, 64.4, 73.0, 79.0, 86.9 [TVC 67.0, 77.5]]. bAdditional years expected to live from age 40 years (95% CI): Method 
1: Fully stratified: ID & T2DM: 32.9 years (27.6, 39.2); ID & No T2DM: 30.0 years (28.4, 31.7); No ID & T2DM: 36.8 years (35.5, 38.1); No ID & No T2DM: 
43.3 years (43.0, 43.7); Method 2: Partially stratified: ID & T2DM: 32.3 years (27.1, 38.4); ID & No T2DM: 30.0 years (28.4, 31.7); No ID & T2DM: 37.0 years 
(35.8, 38.2); No ID & No T2DM: 43.3 years (43.0, 43.6); Method 3: Full model: ID & T2DM: 32.1 years (27.1, 38.0); ID & No T2DM: 30.0 years (28.4, 31.7); 
No ID & T2DM: 37.2 years (36.1, 38.3); No ID & No T2DM: 43.3 years (43.0, 43.7). cThe point estimates and confidence intervals for the Chiang’s 
abridged life table approach represent the additional years expected to live at the start of the 5-year age interval (e.g. at 40 years represents the start 
of the age interval 40–44 years). The point estimate and confidence intervals at 85 years represent 85+ years. dAdditional years expected to live 
from age 40 years (95% CI): Chiang: ID & T2DM: 32.9 years (26.2, 39.6); ID & No T2DM: 29.9 years (28.2, 31.7); No ID & T2DM: 37.7 years (36.5, 38.9); No 
ID & No T2DM: 43.3 years (43.0, 43.7)
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split the timescale, which makes predictions easier. 
These models can also be used in a similar way to pro-
pose Bayesian approaches [8] by allowing strength to 
be borrowed across other regions as covariates with 
fixed or random effects. Bayesian models have also 
been shown to be effective in predicting mortality 
where vital statistics information is missing [36]. In 
principle, modelling the effects of age interactions as a 
spline term are simpler models to fit, use fewer param-
eters and may have benefits in terms of statistical 
precision and accuracy. However, the reduction in var-
iance using the full model needs to be balanced against 
the potential increase in bias. Results from the simu-
lation study showed that the full model estimated life 
expectancy with less bias and variability than the strat-
ified model in this CPRD sample population, but we 
recommend further work to explore this in different 

populations. We also observed that the placement of 
knots can be pulled towards the larger covariate sam-
ple so setting knot placements to those of the minority 
group may be indicated.

Conclusions
We have shown that flexible parametric methods can be 
used to calculate life expectancy and have advantages over 
traditional approaches. The main advantage is that survival 
curves are smoothed, allowing life expectancy to be calcu-
lated by exact age, which is useful for individual-level pre-
dictions. The models can also potentially be used to predict 
different covariate patterns after careful consideration of 
the proportional effects of the covariates and interactions 
between them. We recommend further exploration of this 
novel approach to calculating life expectancy to assess its 
potential across different settings.

Fig. 3 The effect of forcing knots to the minority covariate group in the full  modela. aKnot placements and expected additional years to live at age 
40 are shown in Fig. 2. Additional years expected to live from age 40 years (95% CI): Method 4: Full model with adapted knots (to minority group): ID 
& T2DM: 31.9 years (26.8, 37.9); ID & No T2DM: 30.1 years (28.4, 31.8); No ID & T2DM: 37.4 years (36.2, 38.5); No ID & No T2DM: 43.3 years (43.0, 43.7)
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