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Abstract
Background: Researchers are increasingly investigating the potential for ordinal tasks such as ranking and
discrete choice experiments to estimate QALY health state values. However, the assumptions of random
utility theory, which underpin the statistical models used to provide these estimates, have received
insufficient attention. In particular, the assumptions made about the decisions between living states and the
death state are not satisfied, at least for some people. Estimated values are likely to be incorrectly
anchored with respect to death (zero) in such circumstances.

Methods: Data from the Investigating Choice Experiments for the preferences of older people CAPability
instrument (ICECAP) valuation exercise were analysed. The values (previously anchored to the worst
possible state) were rescaled using an ordinal model proposed previously to estimate QALY-like values.
Bootstrapping was conducted to vary artificially the proportion of people who conformed to the
conventional random utility model underpinning the analyses.

Results: Only 26% of respondents conformed unequivocally to the assumptions of conventional random
utility theory. At least 14% of respondents unequivocally violated the assumptions. Varying the relative
proportions of conforming respondents in sensitivity analyses led to large changes in the estimated QALY
values, particularly for lower-valued states. As a result these values could be either positive (considered
to be better than death) or negative (considered to be worse than death).

Conclusion: Use of a statistical model such as conditional (multinomial) regression to anchor quality of
life values from ordinal data to death is inappropriate in the presence of respondents who do not conform
to the assumptions of conventional random utility theory. This is clearest when estimating values for that
group of respondents observed in valuation samples who refuse to consider any living state to be worse
than death: in such circumstances the model cannot be estimated. Only a valuation task requiring
respondents to make choices in which both length and quality of life vary can produce estimates that
properly reflect the preferences of all respondents.

Published: 22 October 2008

Population Health Metrics 2008, 6:6 doi:10.1186/1478-7954-6-6

Received: 24 January 2008
Accepted: 22 October 2008

This article is available from: http://www.pophealthmetrics.com/content/6/1/6

© 2008 Flynn et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.pophealthmetrics.com/content/6/1/6
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18945358
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Population Health Metrics 2008, 6:6 http://www.pophealthmetrics.com/content/6/1/6
Background
The fundamental assumption underlying the quality-
adjusted-life-year (QALY) model is that the estimated
health state values should reflect the relative desirability
of health states [1]. The aim of the QALY approach is to
allow comparisons of interventions that affect life expect-
ancy to those that affect quality of life. Several elicitation
methods have been proposed to estimate QALY values
reflecting people's preferences, with recent interest in
methods requiring only ordinal respondent preferences
[2-4]. Ranking responses such as stating that A is preferred
to B (without reference to any numerical trade-offs) are
cognitively easier than stating by how much A is preferred
to B, and so make less stringent assumptions about the
cognitive abilities required to compare options.

Discrete choice experiments (DCEs) are the most com-
mon type of ordinal task used in health services research
to estimate utilities based on patient choices. DCEs can
estimate health state values for two reasons. First, they are
compatible with Lancaster's theory of value, which states
that the total utility of a state can be decomposed into util-
ities of characteristics that describe it [5]; given an appro-
priate statistical design [6], utilities of alternative health
states (profiles/specifications) allow one to infer utilities
of attribute levels that describe them. Second, they are
consistent with random utility theory (RUT), a well-tested
theory of human decision-making [7,8]. RUT assumes
that the total utility of a good/service can be expressed as
the sum of two components, one fixed (systematic), and a
second random (stochastic). If the random component is
an independently and identically distributed (iid)
extreme value type 1 (Gumbel) random variate, then the
underlying choice process is consistent with McFadden's
(1974) conditional (multinomial) logit model, and this
model can be used to estimate the elements of the fixed
component [7]. That is, the relative choice frequencies
reveal the individuals' preferences (utilities), which can be
estimated from the frequencies as a function of attribute
levels. When the above model holds, and in particular
when no choice probabilities equal 0 or 1, we refer to the
model as the conventional random utility model.

Ranking [2,3] and best-worst experiments [4] (which
elicit 'partial rankings') can be viewed as generalisations
of DCEs [9] that can be used to obtain data to estimate
utilities of individual attribute levels (and their interac-
tions, given larger designs), or the utility of a profile. Two
recent papers recognise and discuss the potential of RUT-
based choice tasks to estimate such values. Salomon and
McCabe et al proposed omitting length of life as a variable
in the main valuation task [2,3], and asking respondents
to choose between impaired living states and the death
state. Specifically, respondents are required to rank several
states (profiles) with death as one of the states. The idea is

that by including the death state somewhere on the latent
variable (continuum of health or quality of life), the dif-
ference between any given health (or quality of life) state
and death on this variable can be estimated from the
probability of choosing death over a particular (usually
very bad) state. (Comparisons between the death state
and good states are neither required nor generally mean-
ingful due to nobody preferring death). This probability
can be estimated at an individual level (if the respondent
has made repeated choices) or at the sample level using
the proportion of people choosing death.

This paper explores the model proposed by the above
authors using data and results from the ICECAP (Investi-
gating Choice Experiments for the Preferences of Older
People-ICEPOP project – CAPability instrument) DCE.
The ICECAP measure provides an index of capability for
older people. It is not a QALY measure and is not intended
to be such: the values do not represent the trade-offs peo-
ple are willing to make between quantity and quality of
life. Nevertheless, it is possible to treat the ICECAP data as
if they were being used to generate QALYs, and thus to
explore this model using the data generated by the valua-
tion exercise for the ICECAP measure. Using these data,
this paper shows that there is no reason to expect that the
model estimates reflect the true quantity/quality trade-
offs that the respondents will make. In fact, the utility esti-
mates from such models will agree with those from time
trade-off (TTO) or standard gamble (SG) tasks only by
chance. Thus, the aims of this paper are to:

1) estimate QALY-like values from the ICECAP DCE data
using the common model proposed by Salomon and
McCabe et al; and

2) illustrate that their model estimates are sensitive to the
proportion of people whose choices are consistent with
conventional RUT.

The paper concludes with a research agenda.

Methods
Data – the ICECAP index of capability for older people
The ICECAP instrument was designed to give a set of gen-
eral capability values for the UK population aged 65+
[10]. By focusing on general quality of life rather than
health or health-related quality of life the measure can be
used to compare across health and social care interven-
tions. The measure has five attributes (attachment, secu-
rity, role, enjoyment and control), each varied over four
levels. A given state is described by the levels defining it:
for instance state 22422 represents the state where every
attribute takes level two, except role which takes level four
(the most desirable level). An initial set of population
level quality of life values was generated using preference-
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Table 1: Terminology for attribute levels, and rescaled values, such that the absence of capability, state 11111, is equal to zero, and full 
capability, state 44444, is equal to one; level numbers appear in brackets.

Attribute Value

Attachment

(4) I can have all of the love and friendship that I want 0.2535

(3) I can have a lot of the love and friendship that I want 0.2325

(2) I can have a little of the love and friendship that I want 0.1340

(1) I cannot have any of the love and friendship that I want -0.0128

Security

(4) I can think about the future without any concern 0.1788

(3) I can think about the future with only a little concern 0.1071

(2) I can only think about the future with some concern 0.0661

(1) I can only think about the future with a lot of concern 0.0321

Role

(4) I am able to do all of the things that make me feel valued 0.1923

(3) I am able to do many of the things that make me feel valued 0.1793

(2) I am able to do a few of the things that make me feel valued 0.1296

(1) I am unable to do any of the things that make me feel valued 0.0151

Enjoyment

(4) I can have all of the enjoyment and pleasure that I want 0.1660

(3) I can have a lot of the enjoyment and pleasure that I want 0.1643

(2) I can have a little of the enjoyment and pleasure that I want 0.1185

(1) I cannot have any of the enjoyment and pleasure that I want 0.0168

Control

(4) I am able to be completely independent 0.2094

(3) I am able to be independent in many things 0.1848

(2) I am able to be independent in a few things 0.1076

(1) I am unable to be at all independent -0.0512

Adapted from Table 2 of the main ICECAP valuation paper with permission of the first author and Elsevier Publishing [11].
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elicitation methods. Development of the attributes and
estimation of these values (summarised in table 1) is
described elsewhere [10,11].

Sampling was restricted to those aged 65 and over, using
the sampling frame of respondents to the Health Survey
for England (HSE). The survey was interviewer-adminis-
tered in respondents' homes. The main HSE survey (con-
ducted 6–12 months earlier) provided additional data,
such as: basic socio-demographic information; health;
nature of locality and environment; social support; partic-
ipation and contact with others; and general well-being.

The main valuation task was a best-worst scaling (BWS)
exercise [12,13] that focuses on 'profiles' of 'attributes';
that is, respondents choose their most and least preferred
attribute levels within each profile (quality of life state)
they evaluate [4]. This minimises cognitive burden for
respondents in this age group, important because tradi-
tional DCE tasks requiring the comparison of entire qual-
ity of life states can be cognitively difficult. However, two
(simple) between-profile comparisons were included: 1)
comparing each state with a respondent's own quality of
life; and 2) comparing each state with death. The DCE
with the latter choice included is described below.

Design of the discrete choice experiment
Varying five attributes (K = 5), each with four levels (L =
4), meant that the total number of possible states was 45

= 1024. Due to practical constraints it was not possible to
recruit enough respondents to estimate interactions.
Therefore, two versions of an orthogonal main effects
plan (OMEP) obtained from this website http://
www.research.att.com/~njas/oadir/, as suggested by Street
et al [14], were administered. An OMEP ensures that esti-
mates of all (4 × 5 = 20) main effects are uncorrelated.
This OMEP was used to make survey version 'A', and its
foldover (levels 1 and 4, and levels 2 and 3, are swapped)
was used to make survey version 'B'. Respondents were
randomly allocated to receive version A or version B, and
each version contained 16 quality of life states. For each of
the 16 states, respondents were first asked if the quality of
life state in question was at least as good as their own life.
If they answered yes, it was assumed that they also consid-
ered the state to be better than immediate death. This
assumption that nobody would rather die than continue
living may be questionable but could not be tested, given
concerns expressed by the ethics committee. If they
answered no, they were asked if they considered the state
in question to be 'a life worth living'.

Random utility theory
As previously noted, RUT assumes that the utility of each
state/profile has a fixed (systematic) component and a
random (stochastic) component. Utilities are not known

with certainty by researchers, hence are random variables.
Thus, the probability that state i is chosen as best is equal
to the probability that its utility is greater than the utility
of every other state in a given choice set. Respondents are
assumed to choose the state with the greatest utility. To
operationalise the model one must make assumptions
about the probability distribution of the random utility
component.

The conditional logit statistical model
The McFadden multinomial representation of random
utility theory [7] (also set out by Holman and Marley in
Luce and Suppes [15]) assumes that each random utility
component is distributed as an iid extreme value type 1
(EV1 or Gumbel) random variate with zero mean and
fixed variance [7,16]. This results in the distribution of the
difference between (any) two states being logistic [17].
Thus, the conditional logit model assumes that each
respondent perceives the difference between state 11111
(with every attribute taking its worst possible level) and
death as a random variable from a logistic distribution.
McCabe et al state that the odds of state j being chosen
over state k is exp{μj - μk}, where μi is the utility of state i
[3], with the log odds estimating the utility difference of
health states j and k. However, as is true of all limited (dis-
crete value) dependent variable models, this model has an
identification problem due to the error variance, or equiv-
alently, the scale of the utility estimates being confounded
with the model parameters. The importance of this is
explained in the next section.

Model estimation
The ICECAP DCE essentially asked respondents to choose
between each state and death (subject to the assumption
that a respondent would not prefer to die immediately);
hence, one could use a regression model to estimate val-
ues that assign a zero value to death based on people's
preferences, as proposed by McCabe et al and Salomon
[2,3]. However, such model estimates from the ICECAP
DCE are likely to be unreliable because the proportion of
people who choose death as more preferred should tend
to zero as quality of life states improve, yielding much less
precise estimates. Indeed, if all respondents in a sample
agreed that (for example) all states at least as good as
33333 (a state where each attribute has level 3) were
worth living, one could not estimate the additional utility
of level 4 compared with level 3 for any attribute. (As
noted above, a ranking exercise involving inter-profile
comparisons would not suffer from this limitation but
such an exercise would not have been possible with this
sample of respondents.) Another issue is that the assump-
tion of constant error variance within and between
respondents in the DCE is unlikely to be true because peo-
ple are likely to be more consistent in their preferences as
the quality of life state on offer becomes more or less
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attractive. In other words, the variance of the random util-
ity term is likely to be small for very poor (good) states,
reflecting general agreement that such states are highly
unattractive (unattractive), but larger for intermediate
states, reflecting disagreement on the relative value
assigned to these. For these two reasons, choice consist-
ency is likely to be higher for very attractive or unattractive
states, and lower for states in between.

Problems of inconsistent choices and low precision are
less likely in conventional ranking studies like those of
McCabe et al and Salomon which compare health states
with each other (rather than death) [2,3]. Therefore, to
minimise such problems here, the full set of anchored val-
ues was not estimated directly from the DCE. Instead, the
final values from Coast et al [11] which are population-
level best-worst estimates of quality of life (capability)
anchored such that state 11111 has zero value – were
rescaled using the DCE estimates of two quality of life
states. The importance of using a minimum of two states
from the DCE to rescale will become clear from consider-
ation of the random utility component. As noted earlier,
estimates in all limited dependent variable models are
confounded with the error variance [18]; thus, the esti-
mate of the utility of (for example) state 11111 relative to
death is actually its utility divided by the standard deviation
of the error distribution. So, any particular odds ratio (for
11111 relative to death) is consistent with a large (small)
difference in utility divided by a large (small) error stand-
ard deviation or, indeed, an infinite number of difference-
standard deviation combinations. So, one must correct for
this confound before rescaling BWS values, which can be
done in the same way that one calculates willingness to
pay from a DCE [18]. That is, one can divide k-1 utility
estimates by the k-th estimate to render the estimates
scale-free; in economics the k-th estimate is the value of
money (the payment attribute) so dividing the value of a
given attribute level by that of money estimates the
respondent's willingness to pay.

The paragraph above explains why estimates from at least
two states must be used to rescale the BWS values. How-
ever, it makes sense to choose only two states that are close
to death to maximise the number of respondents who
potentially will consider states to be worse than death.
The reasons for this are twofold. First, the value of rela-
tively attractive states would be estimated very imprecisely
(due to few respondents choosing death for states high on
the latent scale). Second, differences in mean values can
only be correctly calculated after adjusting for differences
in variances on the latent scale [19]: as stated above, vari-
ances are likely to increase and then decrease with
improvements in quality of life so states should be picked
that lie relatively close together. So, the estimates of states
22222 and 11111 relative to death were used to do this.

Whilst state 11112 (for instance) is closer to death than
22222, rescaling the data by a single attribute level esti-
mate would sacrifice information on the other four
attributes. The estimate of state 22222 relative to death
divided by that of state 11111 relative to death is scale-
free; this ratio was used to rescale the BWS values so that
zero represents the death state (rather than zero represent-
ing state 11111 as in Coast et al [11]). The statistical
model is set out more formally below.

Rescaling to ensure death has zero utility
For individual i the utility of state j over that of state
11111 is given by:

 is a vector of (5 × 3 = 15) dummy variables, each one

representing (for quality of life state j) the additional util-
ity of the level of a given attribute over that of level 1 and

 is the vector of coefficients of the dummy variables. Dj

is a dummy variable equal to 1 for the death state, 0 oth-
erwise. Only the estimated coefficient on the death

dummy variable ( ) and estimated coefficients on the
five dummy variables representing the additional utility
of level 2 over level 1 for each attribute are of interest
(State 11111 has zero utility in the model which is esti-
mated in Stata using the clogit command.) Thus, tariff22222,

the value of state 22222, is equal to the sum of the five

associated elements of . Then, ratio, the base-case scale-

free utility of state 22222 relative to state 11111 is:

Solving for :

Substituting  and  (the estimated val-

ues from the BWS valuation exercise) into (3) along with

the value of ratio from the DCE gives  (the estimated
value for death in the BWS model).

Following the rescaling procedure in Coast et al [11] of
subtracting 1/5 of tariffdeath from all the BWS attribute level
utilities ensured that the 'bottom' anchor (here, death)
had zero utility. Dividing by the resulting value of state
44444 ensured that the 'top' anchor (44444) had utility of
one. This model assumes all respondents conform to con-

U D Xij j j ij= + +α β ε (1)

X j

β

α̂

β

tariff
tariff

ratio
ˆ ˆ
ˆ ˆ

22222
11111

−
−

=α
α

(2)

α̂

tariff ratio tariff
ratio

ˆ ˆ
ˆ22222 11111

1
− ⋅
−

= α (3)

tariffˆ ′11111 tariffˆ ′22222

ˆ ′α
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ventional random utility theory in making choices
between living states and death. However, as is discussed
next, there are reasons to suspect that this may be incor-
rect in the context of the death state.

Decision-making processes used by respondents when 
considering death
Consider a case where a respondent makes a statement
along the lines of "life is always worth living". This
implies that for that respondent no quality of life state is
worse than (or even equal to) death. Thus, those who con-
sider all life worth living, choose between living and death
states deterministically instead of stochastically: the prob-
ability of choosing a living state as preferred is identically
equal to one. Under the random utility model, it can be
shown that the probability of choosing a living state over
the death state is one if and only if the difference in utility
between every living state and death is infinite (see appen-
dix for mathematical proof). Thus, in this case, if the liv-
ing state is assigned a finite value then the death state
cannot be assigned any finite value on the latent contin-
uum. Moreover, if one uses conditional logit to model
these choices, one implicitly assumes that these people
form the right tail of the error distribution. Yet, no distri-
bution exists for them, and the parameter estimate for
'11111 minus death' on the latent utility scale is deter-
mined by the relative proportions of people who do and
do not trade with death. To show the sensitivity of
rescaled values to these proportions, they were varied sys-
tematically in simulations using a modified bootstrap
procedure [20].

Sensitivity analysis
To show how a random utility model can result in mis-
leading inferences, two hypothetical types of people were
considered: 1) people who make all choices stochastically;
and 2) people consistent with the conventional random
utility model when trading-off attributes of quality of life,
but who are deterministic when comparing states with
death (that is, their choice rule is that life is always pre-
ferred to death). The proportion of people of each type
was varied in a series of analyses by resampling from each
of the two types: those who traded with death and those
who never traded with death. It should be noted that
increasing the proportion of people who traded with
death relaxes the assumption that all people in ICECAP
observed not to trade would never have traded (and were
therefore type 2). Respondents were (re)sampled (with
replacement) from the actual samples observed in ICE-
CAP such that the observed frequencies of people willing
to consider states as worse than death varied from 10% to
75%. The overall sample size was fixed at that number
with complete data in the DCE (282). 50 bootstrap resa-
mples were used for each set of proportions; additional
resamples are not required to estimate a bootstrap mean

compared with estimating, say, a percentile confidence
interval around a mean. The mean of the 50 resamples
was calculated for the death dummy variable, which rep-
resented the estimated utility of death relative to the omit-
ted state (11111), confounded with the unobserved error
variance. The sum of the five dummy variables (one for
level 2 of each attribute) represents the utility estimate for
state 22222 relative to state 11111, again confounded
with the unobserved error variance. Equations (1) and (3)
were used to estimate the position of death on the BWS
scale, enabling rescaled values to be constructed, which
make the same assumptions as those in QALYs.

Results
Data were collected between October 2005 and January
2006, with 478 individuals sampled. This yielded 315
(66%) fully productive interviews (respondents reached
the end of the interview), of which 282 answered all 16
DCE comparisons with death. Of the 282 respondents with
complete DCE data, 73 (25.6%) considered at least one
state to be worse than death. The figures for survey versions
A and B were 46 of 151 (30.5%) and 27 of 131 (20.6%)
respectively. The higher version A percent likely reflects the
fact that state 11111 only appears in A; the worst possible
state in version B (state 41111 according to the BWS values)
had "attachment" with a better level than 1.

ICECAP base-case rescaled values
Equation (1) is reproduced below:

From the DCE results, the coefficient on the death dummy

variable ( ) was estimated to be -0.993. The estimated
value of state 22222 (tariff22222) was 2.942, calculated as

the sum of the estimates of the relevant five elements of

. Therefore, on the latent quality of life continuum,

using equation (2) to calculate the distance (ratio) with
respect to the death state, state 22222 was (2.942 – -
0.993)/(0 – -0.993) = 3.964 times as far from death as
state 11111. Thus, after 're-anchoring' to incorporate
death, the BWS data should also have the property that
state 22222 is 3.964 times as far from death as state 11111
is. Applying the linear transformation in Coast et al [11]
to the raw BWS estimates (given in Table 2) but using this
additional constraint produces the rescaled estimates,
given in the final column of the table. Thus, they are
anchored such that death is zero, state 44444 ('full' qual-
ity of life) is one, and state 22222 (0.626) is 3.964 times
as far from death (0) as state 11111 (0.158).

U D Xij j j ij= + +α β ε (1a)

α̂

β
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Table 2 shows that the DCE estimates are not always
rationally ordered for level 2 and above for certain
attributes. Indeed, the only estimates that monotonically
increase with levels are for "control", which reflects poor
precision due to small numbers who consider living states
as worse than death. However, it should be noted that
these results are used only to illustrate the problem of
using limited dependent variable models to anchor living
states to the death state; ICECAP was never meant to be a
QALY measure. As expected, the estimate of the death
state is negative because on average it was considered
worse than state 11111 (the omitted state in the DCE);
only 26% of people were willing to consider at least one
living state to be not worth living – that is, 26% were def-
initely probabilistic in making choices involving death.
Thus, on the latent utility scale state, 22222 is (2.942 – -
0.993)/(0 – -0.993) = 3.964 times as far from death as
state 11111. The rescaling used ensures that the new BWS

values in the final column retain this relationship
between states 22222 and 11111.

74% of respondents never considered a living state to be
worse than death. However, some of these may change
their mind on another occasion, or if different quality of
life states had been presented. 39 respondents (14%) are
recorded as having spontaneously made statements along
the lines of "life is always worth living" (often that is was
"God-given") which shows them clearly to be type 2, mak-
ing choices between living and death states deterministi-
cally, not stochastically. There may have been others who
made similar comments not recorded by the interviewer
and as respondents were not directly asked this question,
this 14% can be regarded as the minimum proportion
with this view. Therefore, the effect of varying the percent-
age of people trading with death was investigated in the
sensitivity analyses.

Sensitivity analysis
Table 3 presents seven sets of rescaled values. The first rep-
resents the base case state in Table 1 using the actual DCE
data from the ICECAP valuation survey. Each of the other
six sets presents:

• Rescaled BWS value for state 11111;

• Rescaled BWS value for state 22222 (calculated from the
sum of the five level 2 dummy variables); and

• Best-Worst values rescaled using the DCE estimates
according to the model presented above.

Each set of results represents the mean of 50 stratified
bootstrap replications using sampling probabilities to
produce the frequencies in Table 1.

Table 3 shows that as the percent of people considering
states worse than death grows (type 1), most of the
rescaled BWS values are 'stretched' downwards. The excep-
tions are very highly valued attribute levels. Since, for the
best possible quality of life states, the 'less valued'
attributes of these states are 'stretched downwards' the
'more valued' attributes must be stretched upwards to sat-
isfy the mathematical constraint that state 44444 must
have a value of unity. Estimated values for unattractive
states become less positive, with state 11111 being zero
when the estimated coefficient for the death dummy
equals zero, implying that the odds of choosing death
over any living state is approximately one. As the propor-
tion of type 1 people grows larger than 50%, the estimated
value of state 11111 becomes negative. Thus, for set 6,
which has percentages of traders and non-traders approx-
imately in reverse to what was observed in reality, the
mean estimate of 11111 is highly negative. This implies

Table 2: Best-worst scaling (BWS), discrete choice experiment 
(DCE) and rescaled BWS (rBWS) estimates

State BWS DCE rBWS

Death state - -0.993 0
'No capabilities state' (11111) 0 - 0.158
'Some capabilities state' (22222) 0.556 2.942 0.626

Attribute Level*

Attachment 4 0.254 1.731 0.245
3 0.233 0.931 0.227
2 0.134 1.313 0.144
1 -0.013 - 0.021

Security 4 0.179 0.264 0.182
3 0.107 0.479 0.122
2 0.066 0.143 0.087
1 0.032 - 0.059

Role 4 0.192 0.472 0.193
3 0.179 0.551 0.183
2 0.130 0.385 0.141
1 0.015 - 0.044

Enjoyment 4 0.166 0.419 0.171
3 0.164 0.619 0.170
2 0.119 0.453 0.131
1 0.017 - 0.046

Control 4 0.209 1.631 0.208
3 0.185 1.137 0.187
2 0.108 0.648 0.122
1 -0.051 - -0.012

* Numbers refer to levels from most attractive (4) to least attractive 
(1) and correspond to level wording given in Table 1
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that on average people consider this state to be worse than
death.

Discussion
The fundamental limitation of using the ordinal tasks pro-
posed by Salomon and McCabe et al [2,3] to anchor living
states to death is as follows. Only the TTO or SG (at least
conceptually) estimate the trade-off that respondents are
willing to make between quantity and quality of life. The
estimate of the 'death state' in the ordinal models does not
conceptually represent this trade-off: it represents the
mean distance between the death state and the worst pos-
sible living state on the latent (health) scale (confounded
with variance scale factor). If any respondents do not con-
form to the assumptions of conventional random utility
theory then this mean is calculated across some values
that are infinite and even if all do conform, it is yet to be
proven mathematically that this distance conceptually is

the same as that trade-off. It is important to note that peo-
ple who refuse to consider a living state to be worse than
death may still consider an impaired health state to be
'worth' a fraction of full health in standard gamble or time
trade-off tasks; a person doesn't have to consider states
that occur for sure, in other words are certain, to be worse
(or better) than death to be indifferent between the lives/
gambles involving impaired health. A given log odds ratio
in the McCabe et al [3] model cannot be interpreted as a
mean difference in latent utility. Instead, it is an average
(with unknown weights) of (at least) two groups of peo-
ple:

• For one group, there is a distribution of utility differ-
ences between 11111 and death. Choices of people in this
group conform to RUT with death somewhere on the util-
ity scale (other than minus infinity), and may conceivably
vary in repeated samples.

Table 3: Sensitivity analysis results

Set Base 1* 2** 3 4 5 6

Respondents considering states worse than death 10% 25% 30% 40% 50% 75%
'No capabilities state' (11111) 0.158 0.260 0.159 0.128 0.063 0.007 -0.132
'Some capabilities state' (22222) 0.626 0.671 0.627 0.613 0.584 0.559 0.497

Attribute Level

Attachment 4 0.245 0.240 0.245 0.247 0.250 0.253 0.260
3 0.227 0.224 0.227 0.228 0.230 0.232 0.237
2 0.144 0.151 0.145 0.142 0.138 0.134 0.125
1 0.021 0.043 0.021 0.014 0.001 -0.011 -0.041

Security 4 0.182 0.184 0.182 0.182 0.180 0.179 0.176
3 0.122 0.131 0.122 0.119 0.113 0.108 0.095
2 0.087 0.101 0.087 0.083 0.075 0.067 0.048
1 0.059 0.076 0.059 0.054 0.043 0.033 0.010

Role 4 0.193 0.194 0.194 0.193 0.193 0.192 0.191
3 0.183 0.185 0.183 0.182 0.181 0.179 0.177
2 0.141 0.148 0.141 0.139 0.134 0.130 0.120
1 0.044 0.063 0.045 0.039 0.027 0.016 -0.009

Enjoyment 4 0.171 0.175 0.171 0.170 0.168 0.166 0.162
3 0.170 0.174 0.170 0.169 0.167 0.165 0.160
2 0.131 0.140 0.131 0.129 0.124 0.119 0.108
1 0.046 0.064 0.046 0.040 0.028 0.018 -0.007

Control 4 0.208 0.207 0.208 0.208 0.209 0.209 0.211
3 0.187 0.189 0.187 0.187 0.186 0.185 0.183
2 0.122 0.132 0.122 0.119 0.113 0.108 0.095
1 -0.012 0.014 -0.011 -0.019 -0.035 -0.050 -0.084

* Based on only three bootstrap samples: maximum likelihood estimation would not converge on global maximum on iteration 2, 3, or 4 for 8 
different seeds for random number generator
** Three bootstrap sets abandoned due to failure to converge on an iteration. Fourth seed chosen successfully allowed a set with 50 bootstrap 
iterations to be estimated
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• A second group whose choices involving death are deter-
ministic because they consider all life to be worth living –
effectively, for members of this group the utility of death
is minus infinity.

The reason why the weights are unknown is that respond-
ents who never trade with death in a given valuation exer-
cise may have traded on another occasion or when faced
with a worse health/quality of life state. Furthermore,
even if the weights were known, one cannot estimate the
'true' population average TTO or SG value because the
TTO/SG values for non-traders cannot be recovered in the
analysis. The latter point is most obvious when a sample
contains only people who always consider life worth liv-
ing, no matter how bad. The odds that such people will
choose death is exactly zero (because crucially, this is not
a sampling zero), and the utility difference is infinite for a
RUT model with EV1 errors (see the mathematical Appen-
dix). Thus, the model proposed by Salomon and by
McCabe et al cannot be estimated because no-one will
choose death, leading to lack of identification of the death
dummy variable. In turn, this will lead to all estimates
being measured with respect to a remaining state such as
11111. If a given DCE (or ranking/BWS) model purports
to estimate values reflecting quantity-quality trade-offs
like QALYs, it also must apply to people who never con-
sider health states to be worse than death. The model of
Salomon and McCabe et al clearly does not satisfy these
requirements [2,3].

Limitations
The true proportion of people unwilling to consider any
ICECAP state to be worse than death in the valuation sam-
ple was unknown. It is unlikely that the 74% who consid-
ered all states worth living were all type 2 people, so some
of them might with repeated sampling decide that death
was better than 11111 (at least, and possibly other states
higher on the latent continuum). It also may be that
11111 was insufficiently unattractive for them to choose
death and/or there may be states imaginable to them for
which death would be preferable. Nevertheless, as state
11111 was described as having 'none' of any of the five
(intended as, in some sense, 'fundamental') attributes of
quality of life, it seems reasonable that most of these
respondents cannot conceive of a living state that is both
worse than 11111 and worse than death.

Potential variation in rescaled values was shown, but the
actual degree of bias (deviation from TTO/SG values)
could not be calculated as TTO or SG questions were not
asked. The ICECAP study will be repeated with a general
population sample that will include at least one TTO
question to inform this issue. More generally, questions
such as "does this model produce estimates with an
acceptably low bias?" will in any case require a TTO/SG

estimate of state 11111 (or another state), in which case
using a RUM to anchor estimates becomes moot.

Although the RUM used is the same as McCabe et al and
Salomon [2,3], model estimation required more complex
analysis to synthesise two different choice processes.
Therefore the approach adopted here leads to less clear
inferences. However, the approach is justified due to the
cognitive burden that would have been imposed by a tra-
ditional DCE and the imprecision in model estimates
resulting from comparisons with death.

As the percentage of people willing to choose death
decreased, estimation issues increased because the esti-
mates became very sensitive to the choices of fewer peo-
ple. This caused problems for bootstrapping because a
given bootstrap sample was likely to include only people
with the same preferences, leading to boundary solutions
and a failure of maximum likelihood estimation to con-
verge on a global maximum.

Comparisons with previous work
McCabe et al's model yields an estimated difference
between the lowest health state and death that implies an
odds of 2.0375:1 for these two states [3]. Thus, approxi-
mately 2/3 of people thought the living state preferable to
death. Whilst it is possible that greater religiosity led to the
higher percentage of non-traders in ICECAP, it has been
observed that older people are more likely to consider very
bad states to be worse than death in EQ-5D data [21]. The
ICECAP team's use of best-worst methods to estimate the
quality of life values is supported by one of McCabe et al's
findings, namely that the latter's models were sensitive
only to upper and lower rankings. However, it should be
noted that neither Salomon nor McCabe et al seemed to
consider differences in error variances: in the presence of
larger variances around middle rankings the assumption
of constant variance artificially reduces the sensitivity of
results to these.

Salomon found that the TTO value for the worst possible
state was not the same as that from a MNL (random util-
ity) ranking model [2]. This is unsurprising as the esti-
mates will only coincide by chance, and a different
proportion of people refusing to consider any states as
worse than death may have produced answers that agreed
with the TTO estimate.

Future work
The TTO and SG methods require people to choose
between health states lasting for defined periods of time.
One can argue that respondents in DCEs (ranking and
BWS) should also do the same; that is, respondents would
choose a complete health description (lasting for a given
length of time) that they prefer. Thus, researchers should
Page 9 of 11
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consider including length of life as an experimental factor
in future preference elicitation studies that use ordinal
response tasks. Such an approach requires a more com-
plex study design that is beyond the scope of this paper
but guidelines for such designs are now readily available
[6].

Future work that estimates QALY values should ensure
that statistical models used to analyse data are consistent
with decision-making processes (models) used by people.
McCabe et al state "research on the thought processes of
individuals undertaking ranking exercises would be a val-
uable contribution to this field" [3]. In fact, this under-
states the seriousness of the issue; we clearly need research
to ascertain under what circumstances and to what extent
choices satisfy conventional RUT assumptions. Indeed, it
seems reasonable to think that a respondent may conform
to conventional RUT in one context (comparing quality of
life), but not in another (comparing life with death). It
also may be that there is no (easy) way to avoid asking one
or more TTO/SG questions to properly estimate the
anchor at death, and one of Salomon's proposed methods
did exactly this [2]. In this event, one should try to mini-
mise the context effects for which some TTO tasks previ-
ously were criticised [22]. DCE models incorporating
length of life as a variable also deserve investigation.

Philosophical and psychological issues around aggrega-
tion of preferences over people who consider bad states
worse than death and those who consider all life worth
living are pertinent. Recent work suggests growing realisa-
tion that this needs more thought before another large
QALY valuation exercise is conducted [23,24].

Conclusion
Conditional logit estimates of utility differences between
a given living state and death can be heavily influenced by
the proportion of people who consider a state to be worse
than death. It does not, and cannot, take into account the
utility values of living compared to death for people who
make choices involving death deterministically. Moreo-
ver, the greater the number of such people in a given DCE,
the more biased the estimate of the utility difference
because the (assumed) logistic distribution is not defined
for people who make choices deterministically instead of
stochastically.
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Appendix
Summary
If the extreme value random utility version of the (condi-
tional) multinomial logistic (MNL) model is assumed to
hold and the choices of a respondent are such that P(L, D)
is identically (not statistically) equal to 1 for all living
states L ≠ D, where D is death, then u(D) cannot be
assigned any finite value, such as 0.

Let L denote a typical quality of state, i.e. a living state, and
D death. Let P(L, D) denote the probability that an indi-
vidual respondent chooses L over D. Assume that the
respondent's choices satisfy the random utility version of
MNL. That is, there is a (standard) extreme value (type 1)
random variable ε such that (Pr(ε ≤ t) = exp(-e-t); (∞ <t <
∞), and scale values u(L) and u(D) such that

P(L, D) = Pr(u(L) + ε > u(D) + ε')

where ε and ε' are independent samples of the random
variable. Then classic results show that

Case 1: When is P(L, D) ≡ 1 for all living states L ≠ D?
(1) implies this is the case if, and only if, for all L ≠ D, u(L)
- u(D) = ∞. The only possible solutions are:

i) for all L ≠ D, u(L) = ∞, u(D) < ∞,

ii) for all L ≠ D, u(L) > -∞, u(D) = -∞.

Comment 1
In case 1i) we would expect the respondent to choose ran-
domly between any two living states, L1 and L2, provided
neither was death (though that choice probability would
not be given by the RUM MNL as it can be interpreted as
given by

which is undefined. In any case such choices do not seem
to be made in real data. So we are left with case 1ii), where
the utilities of different living states L1, L2, neither being
death, can (but do not have to) differ, and all such states

P L D
eu L

eu L eu D
eu L u D

eu L u D
( , )
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( ) ( )

( ) ( )
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=
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are chosen deterministically (i.e. with probability one)
over death.

Comment 2
We can fit the MNL to the data of a respondent satisfying
Case 1ii, but we cannot use death as a 'referent' state that
is assigned some finite value, for example, 0, as the true
value of death is -∞.

Case 2: When is P(L, D) > 1 - δ, with δ 'small', for all living 
states L ≠ D?
Using (1), routine algebra shows that this holds provided
that, for all L ≠ D,

However, as δ approaches zero, the right hand side
approaches infinity, and thus,

for all L ≠ D, u(L) - u(D) approaches ∞ which brings us
back, effectively, to Case 1.

Conclusion
If the extreme value random utility version of the MNL
model is assumed to hold and the choices of a respondent
are such that P(L, D) is identically (not statistically) equal
to 1 for all living states L ≠ D, where D is death, then u(D)
cannot be assigned any finite value, such as 0.
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