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Abstract

Background: Disease burden is not evenly distributed within a population; this uneven distribution can be due to
individual heterogeneity in progression rates between disease stages. Composite measures of disease burden that
are based on disease progression models, such as the disability-adjusted life year (DALY), are widely used to quantify
the current and future burden of infectious diseases. Our goal was to investigate to what extent ignoring the presence
of heterogeneity could bias DALY computation.

Methods: Simulations using individual-based models for hypothetical infectious diseases with short and long natural
histories were run assuming either “population-averaged” progression probabilities between disease stages, or progression
probabilities that were influenced by an a priori defined individual-level frailty (i.e., heterogeneity in disease risk) distribution,
and DALYs were calculated.

Results: Under the assumption of heterogeneity in transition rates and increasing frailty with age, the short natural history
disease model predicted 14% fewer DALYs compared with the homogenous population assumption. Simulations of a long
natural history disease indicated that assuming homogeneity in transition rates when heterogeneity was present could
overestimate total DALYs, in the present case by 4% (95% quantile interval: 1–8%).

Conclusions: The consequences of ignoring population heterogeneity should be considered when defining transition
parameters for natural history models and when interpreting the resulting disease burden estimates.
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Background
Disease burden, whether computed for infectious or for
chronic diseases, is not evenly distributed within a popu-
lation, or even among members of a particular stratum
of the afflicted population. Relatively few afflicted indi-
viduals carry a disproportionate amount of the burden.
This fact is obscured by the “population-averaged”
approach to calculating and reporting standard epidemio-
logical indicators, such as incidence, as well as composite
measures of disease burden, such as disability-adjusted life
years (DALYs). This individual-level heterogeneity in dis-
ease risk, often referred to as “frailty” [1–3], represents
variation beyond that explained by known and measurable

risk factors; such variation may be attributed to genetic,
epigenetic, environmental, and/or stochastic factors.
Unmeasured variation, when labeled as “randomness in
degree of susceptibility,” has long been recognized as im-
portant for interpreting historical patterns in mortality
and for improving the fit of demographic models [4], as
well as for explaining age-dependent patterns of incidence
for diseases such as testicular cancer [5]. Infectious dis-
eases such as HIV, hepatitis C, and tuberculosis are also
relevant candidates for such an analysis approach. How-
ever, although individual heterogeneity has been discussed
in the context of health economic cost-effectiveness
models [6, 7], and variability in transition rates has been
modeled by specifying a distribution function fitted to
clinical data [8], its impact has yet to be explicitly
addressed in current disease burden estimation exercises.* Correspondence: scott.mcdonald@rivm.nl
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The question to be addressed in the present paper is:
Does ignoring individual-level heterogeneity in the rate
of progressing from acute infection to more severe dis-
ease stages result in biased estimates of disease burden
when using a disease progression pathway modeling ap-
proach to compute DALYs? Unobserved, unmeasured
individual heterogeneity cannot be captured by covari-
ates. Therefore, neither adjustment nor stratification are
analysis options, and analytical or simulation methods
are required to quantify the expected effects of ignoring
unmeasured heterogeneity. The fundamental issue at
stake concerns the impact of ignoring individual hetero-
geneity when ranking diseases according to their disease
burden, which is a useful form of presentation for public
health policymakers. If two diseases differ widely in
terms of degree of individual heterogeneity – for in-
stance if variation in individual-level susceptibility to
rhinovirus infection differed greatly from susceptibility
to Campylobacter – then their relative ranking may
change substantially if individual heterogeneity is taken
into account when computing DALYs. If such a ranking
informs the prioritization of public health services, then
appropriate computation of the absolute disease burden
is vital. Thus, a first step towards understanding the
effect of unmeasured heterogeneity on measures such as
the DALY is to employ computational simulations to
compare the expected disease burden in scenarios with
and without such heterogeneity.
A potentially serious concern for the computation and

interpretation of disease burden estimates relates to indi-
vidual heterogeneity in rates of disease progression.
Especially for chronic diseases, persons observed to be
in the same disease stage may represent a wide range of
individual disease progression rates, with consequences
for the evaluation of interventions [9]. “Population-aver-
aged” progression rates are typically employed in the dis-
ease progression pathway models that form the basis for
pathogen-based disease burden estimation [10–12]
However, a given patient population plausibly may con-
tain relatively few fast-progressors, and many more
slow-progressors; the oft-used population-averaged tran-
sition probability obscures the potential skewedness in
the rate distribution, and disregards the extent of any
variability as well as potential correlations between tran-
sition probabilities between successive health states.
Although heterogeneity in infectivity or susceptibility to
infection is also plausible, the current simulations do not
consider this further, as transmission of infection is not
modeled in the present study.
Below, we present simple natural history models (“out-

come trees”) for two fictitious infectious diseases, “X1”
and “X2,” and report the impact on estimated disease bur-
den (in DALYs) when a priori assumed distributions of in-
dividual heterogeneity are incorporated into the model.

The two hypothetical diseases are broadly representative
of infectious diseases with short (e.g., Q fever) and long
(e.g., hepatitis C virus infection) natural histories, but are
not intended to correspond to specific diseases. Rather
than implementing (possibly quite complex) disease pro-
gression pathways of actual infectious diseases, we simu-
late disease burden in simplified natural history models to
facilitate interpretation of the results.
Our primary objective is to compare, for each of the

two disease models, the disease burden for an infected
cohort in which individual heterogeneity in progression
probabilities between disease stages is present (heterogen-
eity variants), to the disease burden if this heterogeneity is
ignored (no-heterogeneity variants). As a secondary
objective, we investigate the impact of ignoring heterogen-
eity in disease progression rates on the disease burden
averted due to a simulated public health intervention,
namely high-coverage age-targeted vaccination.

Methods
In the current study, we employ the term “frailty” more
broadly than used in the statistical literature, where
frailty refers to an unobserved random factor that modi-
fies an individual’s hazard function. We use frailty to
indicate an individual’s position within a population
distribution of disease progression rates (specified as a
Gamma distribution); individuals with higher frailty
values progress more quickly than individuals with lower
frailty values.

Disease models
Figure 1 shows two simplified outcome trees for the
hypothetical diseases X1 and X2. Transition probabilities
and other parameter values were not based on any exist-
ing disease progression pathway model, but were chosen
for illustration purposes only. Both disease models con-
sist of distinct stages, from acute infection through
death. Disease model X1 is an example of a short natural
history disease, in which progression from acute infec-
tion to chronic infection and/or complications and pos-
sible death occurs rapidly; for instance, within the first
year following acute infection. In contrast, disease model
X2 is an example of a disease with a long natural history,
for which low annual transition probabilities between
disease stages are specified. For the latter class of
disease, slow progression means that the most severe
disease stages may not be reached in the patient’s
natural lifetime.
In disease model X1, acutely infected individuals

develop chronic infection with an age-independent tran-
sition probability of 20% (for simulation purposes, this
transition is assumed to effectively occur immediately).
The transition probability for the risk of death following
chronic infection is dependent on age, with case-fatality
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ratios of 5, 1, 2, and 15% specified for the <15, 15–44,
45–64, and 65+ years age-groups, respectively.
Disease model X2 simulates a disease with a long nat-

ural history. As for disease model X1, acutely infected
individuals develop chronic infection with an age-
independent probability of 20% (assumed to effectively
occur immediately). Average progression from the
chronic infection health outcome to severe sequela is as-
sumed to be slow, with a transition probability of 2% per
year. The annual probability of death following develop-
ment of this sequela was set to 4%. Both of these transi-
tion probabilities are specified as age-independent. In
this simulation, we needed to track individuals over
time, and to simulate ageing of the acutely infected
cohort. All individuals were assumed to die after reach-
ing their 86th birthday, if they did not reach the death
stage before this time.
To represent individual heterogeneity in the probabil-

ity of transitioning from acute to chronic infection, from
chronic infection to the severe sequela disease stage
(model X2 only), and from severe sequela to death
(model X2 only), we first assigned frailty values to each
individual by random sampling from an age-independent
frailty distribution. These frailty values are considered to
be assigned at birth, and therefore did not change through
an individual’s lifetime (see below). As a result, the more
frail individuals were modeled to have higher transition
probabilities for the relevant transitions, and the less frail

to have lower transition probabilities. For model X1 only,
individual heterogeneity in the progression from acute to
chronic infection was assumed to be age-related, with
mean frailty increasing with age. This leads to a stochastic
tendency for developing chronic infection being more
likely for older compared with younger individuals.

Frailty distributions
Gamma distributions were defined to represent individ-
ual heterogeneity. For disease model X1, separate
Gamma distributions were specified for each 5-year age-
group (<1 years, 1–4, 5–9, 10–15, …, 80–84, 85+), with
the mean of each frailty distribution assumed to be age-
related, via an exponentially increasing (with age-group)
shape parameter. The variance was kept constant across
age-groups by adjusting the scale parameter accordingly.
Figure 2 plots the resulting distributions for selected
age-groups. For disease model X2, the age-independent
Gamma distribution with unity mean and variance (i.e.,
shape and scale parameters set to 1) was used.

Simulating disease progression and computing disease
burden
The assumed age distribution of incident (acute infec-
tion) cases is provided in Fig. 3. This distribution was
defined using a Gamma(2,17.5) distribution, for which
the mean is 35 years, but with a peak around 18–21
years. A total of 5000 incident cases was simulated.

Fig. 1 Outcome trees describing the natural histories of two hypothetical diseases, termed disease model X1: (three health outcomes: acute infection,
chronic infection, and death following chronic infection) (upper panel), and disease model X2: (four health outcomes: acute infection, chronic infection,
severe sequela, and death) (lower panel). DW = disability weight; DD = disability duration; TP = transition probability
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We simulated disease progression in both disease
models separately using an individual-based modeling
approach, whereby each infected case was followed
throughout disease progression, and the burden associ-
ated with each health outcome (and the sum over all
outcomes) was computed using standard pathogen-
based DALY methodology [10]. By using an individual-
based modeling approach, we are thus able to account
for the correlation in transition probabilities, which
would be lost when using a population-averaged ap-
proach. In both disease models, all individuals are as-
sumed to start in the acute infection disease stage. In
disease model X2, identically sized cohorts of incident
cases (n = 5000) entered the model each simulation year.
In the no-heterogeneity simulations, the expected

YLD, YLL, and DALYs were computed from the ex-
pected number of cases progressing through an outcome
tree defined by the transitional probabilities and Dutch
male life expectancies for the year 2000 [13], and given
assumed disability weights and durations (Fig. 1).
Disease stage duration was truncated if the simulated

individual reached their 86th birthday while in that dis-
ease stage (relevant for model X2 only). YLD and YLL
measures were summed over all relevant health out-
comes, with the DALY measure defined as the simple
sum of YLD and YLL.
In the heterogeneity simulations, the central idea im-

plemented was that the infected individuals who are
most likely to transition to a subsequent disease stage,
such as a complication or death, are those with the high-
est frailty. For these simulations, we first randomly sam-
pled from the pre-defined frailty distributions (see
below) and assigned frailty values to each individual. For
disease model X1, the number of cases transitioning
from acute to chronic infection was constrained to equal
the expected cases (N) determined using the no-
heterogeneity variant of the same model (to permit com-
parability between heterogeneity and no-heterogeneity
variants). For disease model X2, the number of cases
transitioning from a given health outcome to the subse-
quent health outcome in each simulation year was also
constrained to equal the expected cases (N) based on the

Fig. 2 Frailty distributions assumed for the disease model X1 simulations (five age-groups only are shown). Gamma distributions were parameterised
so that mean frailty increased exponentially with age-group, but variance was held constant at unity

Fig. 3 Age distribution of incident cases of acute infection used for both disease models X1 and X2, under the default scenario (X1 and X2 simulations)
and the age-targeted vaccination scenario (X2 simulations only)
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“population-averaged” transition probability. Stochastic
sampling methods were used to determine which individ-
uals transitioned from each health outcome. Specifically, N
individuals were sampled without replacement, with the
probability of being selected weighted according to each in-
dividual’s assigned frailty value. This procedure was then re-
peated for a total of 1000 times, with the median and 2.5
and 97.5% percentiles of the distributions of YLD, YLL, and
DALYs reported.

Sensitivity analyses
For disease model X2, the disease burden will be largely
determined by the number of individuals who reach the
death stage; the risk of death is dependent on the annual
progression probabilities from the chronic infection and
severe sequela stages. In sensitivity analysis, the effect of
the initial choice of these parameter values on the simu-
lated burden and on the overestimation of DALYs due to
assuming population-averaged transition probabilities is
explored. Additional file 1 reports the results of simul-
taneously varying the annual transition probabilities for
the final two transitions in model X2 across a limited
range. In a second sensitivity analysis involving model
X2, two further frailty distributions are specified, and
burden in DALYs compared with that obtained using the
rightward-skewed distribution. In the first, skewedness
was reversed (i.e., corresponding to a disease with few
slow-progressors and many fast-progressors); in the
second a peaked symmetrical distribution was tested
(i.e., corresponding to a disease with equal (low) num-
bers of slow- and fast-progressors).

Age-targeted vaccination scenario
We estimated the effect of a single simulated public
health intervention, age-targeted vaccination with a sim-
ulated high coverage of 80%, and calculated DALYs
averted. This was accomplished by retaining only 20% of
the potential acute infection cases aged ≤19 years, very
crudely simulating the effects of herd immunity on older
age groups (see Fig. 2), and re-running the no-
heterogeneity simulation. Then, the heterogeneity
variant was run, to assess any change in the size of the
vaccination effect. Note that a more accurate simulation
of the impact of an age-targeted vaccination program
would employ a dynamic modeling approach to simulate
the time-dependent influence of herd immunity on suc-
cessive birth cohorts entering the model.
Simulations were carried out in the R statistical

programming environment, version 3.1.0 [14].

Results
Table 1 compares the median YLD, YLL, and DALYs
computed for the no-heterogeneity and heterogeneity
variants of each of the two disease models considered.

Note that the 95% quantile intervals for the heterogen-
eity model variants do not reflect uncertainty in inci-
dence or model parameter values; rather, they only
represent the effect of individual heterogeneity in pro-
gression probabilities on disease burden. In all cases,
fewer DALYs are predicted under the heterogeneity vari-
ants than under the standard, no-heterogeneity variant.
For both simple disease models, ignoring individual het-
erogeneity consistently overestimated disease burden.
For disease model X1, although the number of individ-
uals developing chronic infection was held constant
across the no-heterogeneity and heterogeneity variants,
the no-heterogeneity variant overestimated the total dis-
ease burden by a factor of 1.16 (95% interval: 1.11–1.22).
In Fig. 4 (disease model X1, selected age-groups

shown), the expected rightward shift in frailty distri-
bution before and after transitioning from the acute
to the chronic infection stage is illustrated. The frail-
est individuals, in general and within a given age-
group, are more likely to progress to a more
advanced disease stage. The mean frailty values for
individuals within the acute and chronic infection dis-
ease stages was 2.39 and 3.17, respectively.
For disease model X2, in which a disease with a long

natural history was simulated via specification of annual
transition probabilities, overestimation of total disease
burden by the no-heterogeneity variant was by a factor
of 1.04 (95% interval: 1.01–1.08) (Table 1). This differ-
ence was driven by YLL (overestimated by a factor of
1.12), as YLD was actually larger for the heterogeneity
variant. The “trade-off” between YLD and YLL is due to
a greater proportion of infected persons spending more
time in the chronic infection and severe sequela stages
in the heterogeneity compared with the no-heterogeneity
variant (leading to a higher YLD), and the corresponding
fewer deaths in the former variant (leading to lower YLL).
The expected rightward shift in frailty distribution

with disease stage is illustrated by Fig. 5a. Figure 5b con-
firms the larger burden borne by the frailest individuals;
individuals with the lowest 25% frailty experience no
disease-related mortality, and little morbidity (low YLD),
whereas those in the top 25% frailty quartile have the
largest YLD and YLL. The proportion of total dis-
ease burden comprised by YLL also increases with
frailty quartile, surpassing YLD for persons with the
highest 25% frailty.
In Fig. 6, the burden associated with age-group at

acute infection is shown as estimated using the two dis-
ease model X2 variants. The lower burden for the het-
erogeneity compared with the no-heterogeneity variant
is localized to those individuals acutely infected between
the ages of 5 and 39 years (Fig. 6.)
The results of the first sensitivity analysis indicated

that the values initially chosen for the progression
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probabilities from the chronic infection and severe se-
quela stages resulted in a disease burden overestimation
factor on the high end for the range of parameter values
investigated (Additional file 1). This factor tended to in-
crease as either annual probability increased (leading to
more mortality at a younger age), with a range of 1.01 to
1.08. In the second sensitivity analysis, leftward-skewed
and peaked symmetrical frailty distributions were inves-
tigated; the resulting greater DALYs compared with the
rightward-skewed distribution (main analysis) obtained
with both alternatives lends support to our central find-
ing from disease model X2: burden is lower when there
are a relatively greater number of slow- than fast-
progressors, because of the smaller number of prema-
ture deaths.
The simulation of high-coverage age-targeted

(<20 years) vaccination suggested that this strategy –
preventing 2232 acute infections – would reduce the
disease burden for the conventional (no heterogeneity)
disease model X2 by 56% (Table 2). 11,680 DALYs would
be expected to be averted under the assumption of
population homogeneity in progression rate. For the het-
erogeneity variant of disease model X2, the expected im-
pact of vaccination was nearly identical (55%): an
average of 11,140 DALYs would be averted under the

assumption of individual heterogeneity in transition
probabilities.

Discussion
To what extent does individual heterogeneity in disease
progression rates affect the computation of composite
disease burden measures, such as the DALY? Our prin-
cipal finding is the following: if the degree of individual
heterogeneity that we simulated in transition probability
distributions mimics the extent of unmeasured hetero-
geneity in the population, then ignoring this heterogen-
eity can result in inflated disease burden estimates. In
the case of disease model X1, the simulated dependence
of mean frailty on age in the heterogeneity variant is re-
sponsible for the lower disease burden compared with
the no-heterogeneity variant. With a skewed frailty dis-
tribution, a minority of patients die young, with the ma-
jority living to an older age, compared with application
of a population-averaged transition probability. This
resulted in a smaller YLL – and a consequent 14% lower
total disease burden – being estimated for the hetero-
geneity than for the no-heterogeneity variant.
For disease model X2, in which frailty distributions

were specified as age-independent (i.e., assumed fixed at
the age of acute infection), the 4% lower burden

Table 1 Results of simulations using disease models X1 and X2, comparing the estimated disease burden between no-heterogeneity and
heterogeneity variants. Results indicate the total burden for individuals acutely infected in simulation year 1, with 95% quantile intervals

Disease model [–Variant] YLD YLL (95% interval) DALY (95% interval) Overestimation of DALY (95% interval)

X1 (3 health outcomes, 4 broad age-groups specified for transition from chronic infection to death)

– No heterogeneity 75 1243 1318 1.16 (1.11–1.22)

– Heterogeneitya 75 1060 (1007–1117) 1135 (1082–1192 –

X2 (4 health outcomes)

– No heterogeneity 10750 10210 (9380–11090) 20960 (20140–21740) 1.04 (1.01–1.08)

– Heterogeneityb 11010 9074 (8411–9887) 20090 (19440–20780) –

Note: aGamma distributions, with mean increasing with age. bAge-independent, sampled from Gamma(1,1). Overestimation of DALY is with respect to heterogeneity
model variant

Fig. 4 Frailty distributions of individuals in the acute infection and chronic infection disease stages in disease model X1. Two selected age-groups
are plotted, before (dashed line) and after (solid line) the transition from acute to chronic infection
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estimated for the heterogeneity variant is due entirely to
the simulated heterogeneity in disease progression rates.
This is because even though the most frail individuals
progress the most rapidly through the disease course,
and therefore have a higher probability of developing
severe sequelae and dying at a younger age, on average
disease progression is slower than if heterogeneity is ig-
nored. Due to the skewedness of the frailty distribution,
only a minority of patients are fast progressors; for the
majority of patients, disease progression is slow, and the
severe disease stages, if experienced during their lifetime,
are reached at a later age.
The lower estimated burden for the heterogeneity

variant is therefore due to fewer members of an
acutely infected cohort reaching the age at which
severe sequela or death due to the disease can occur
(and thus resulting in a lower YLL); however, indi-
viduals in this variant tended to spend longer in
chronic infection and severe sequela stages com-
pared with the no-heterogeneity model, which re-
sulted in a higher YLD. Despite this YLD/YLL
“trade-off,” there is an overall reduced burden in the
heterogeneity variant, most apparent in the younger
age-groups (5- to 39-year-olds) (Fig. 6) due to their
lower risk of dying from the disease before reaching
their life expectancy.

It might be argued that the X1 simulations only dem-
onstrate that availability of age-dependent transition
probabilities in place of a single age-independent transi-
tion probability is vital, if the incident case population
covers a wide age range and the risk of developing a
complication or dying is greater for older than for youn-
ger patients. Because in disease model X1 the frailest pa-
tients are the most likely to transition, assuming
increasing mean frailty with age effectively translates to
a statistical preference for older patients transitioning to
chronic infection before younger patients. Disease model
X2 – which explicitly simulates aging of an acutely
infected cohort simultaneously with progression through
the various disease stages – illustrates that the assump-
tion of age-dependent mean frailty is unnecessary for
longer natural history diseases.
For disease model X1, ignoring age-dependent hetero-

geneity leads to overestimation of disease burden; but is
it plausible that mean frailty would increase with age?
Although there are health states for which the young are
at the greatest risk, frailty in general may be roughly
monotonic with age. Cumulative occasions of ill health
from birth (the “insult accumulation” model [4]) would
lead to an individual’s frailty – and so his/her susceptibility
to disease progression and/or death – also increasing with
age. Also, declining mortality rates or increasing life

Fig. 5 Frailty distributions of the members of the infected cohort entering each disease stage, for disease model X2 (upper panel). Disease burden
plotted separately as YLD and YLL, as function of frailty quartile (Q1 = first quartile, etc.), for disease model X2 (lower panel)
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expectancy over a period of time would give rise to
an age-related frailty effect [15]. Finally, in the case of
infectious diseases, immunosenescence (age-associated
decline in immune function) could contribute to an
increasing susceptibility to development of complica-
tions and death [16].
For diseases with a long natural history, as exemplified

by disease model X2, comparison of simulations assuming
age-independent heterogeneity with the no-heterogeneity
variant suggested that ignoring a plausible degree of indi-
vidual heterogeneity in disease progression when comput-
ing DALYs would lead to a 4% overestimation of the total
expected burden among a cohort of acutely infected per-
sons. Although the magnitude of DALY overestimation is
small, mortality burden was overestimated by 14%. If the

prioritization of public health resources are informed
by a ranking of diseases according to overall burden
or mortality burden, differential overestimation (i.e.,
individual heterogeneity affecting burden estimates for
a subset of the ranked diseases) may have important
consequences. In addition, if such a disease model is
used to project the impact of a prevention initiative
such as age-targeted vaccination, heterogeneity could
influence the size and/or direction of the intervention
effect, and therefore investigation of the impact of
homogeneity assumptions is important for decision-
making [7]. However, in our X2 simulation incorporat-
ing individual heterogeneity, the vaccination effect
size (on DALYs) was virtually identical to the pro-
jected effect size for the no-heterogeneity variant.

Table 2 Simulation results: estimated burden under vaccination and no-vaccination scenarios using disease model X2. Results indicate
the total burden for individuals acutely infected in simulation year 1, with 95% quantile intervals

Model variant [–Vacc. scenario] Acute cases YLD YLL (95% interval) DALY (95% interval) Burden averted DALY (%)

X2 No heterogeneity

– No vaccination 5000 10750 10210 (9380–11090) 20960 (20140–21740) –

– Vaccination <20 year 2768 5212 4066 (3537–4635) 9280 (8765–9770) 11680 (55.7%)

X2 Heterogeneity
a

– No vaccination 5000 11010 9074 (8411–9887) 20090 (19440–20780) –

– Vaccination <20 year 2768 5252 3693 (3259–4145) 8945 (8536–9374) 11140 (55.0%)

Note: aIndividual-level heterogeneity was specified as age-independent; frailty values were sampled from Gamma(1,1)

Fig. 6 Comparison of estimated disease burden over age-group at acute infection for disease model X2, with and without heterogeneity in disease
progression rates (main panel): heterogeneity leads to an overall lower burden. The two smaller plots show disease burden by age-group split into YLD
and YLL, for the no-heterogeneity (upper right panel) and heterogeneity (lower right panel) model variants. Capped lines indicated 95% quantile intervals

McDonald et al. Population Health Metrics  (2016) 14:47 Page 8 of 9



Application of the concepts investigated in the current
paper to epidemiological studies in which disease burden
is estimated is relatively unexplored. Estimation of the
extent of unmeasured heterogeneity can in principle be
done by fitting a statistical model to a longitudinal data-
set that records disease state transition times among a
cohort of infected individuals, but certain assumptions
are required [2], and interpretation must be made with
caution. If a variance parameter can be validly estimated
for a given transition, then the calculation of DALYs, for
instance, could incorporate this variability, by specifying
a relevant distribution in place of a single “population-
averaged” transition probability [8].

Conclusions
In conclusion, the current findings corroborate what has
been reported regarding the influence of heterogeneity
in Markov models for cost-effectiveness [6, 7]: ignoring
heterogeneity can produce either optimistic or pessimis-
tic cost-effectiveness ratios, with consequent impact on
the use of such ratios for the planning of interventions.
The heterogeneity issue could apply to every transition
in a Markov model used for disease burden calculation;
therefore, when selecting parameters for this type of
model and interpreting the resulting burden estimates,
the analyst should consider the consequences of
assuming that the population within each health out-
come is homogenous with regard to transition rates.
If this homogeneity assumption cannot be made, an
individual-based modeling approach is the most ap-
propriate solution.

Additional file

Additional file 1: Sensitivity analyses. (DOCX 86 kb)
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