
RESEARCH Open Access
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Abstract

Background: Monitoring national mortality among persons with a disease is important to guide and evaluate
progress in disease control and prevention. However, a method to estimate nationally representative annual
mortality among persons with and without diabetes in the United States does not currently exist. The aim of this
study is to demonstrate use of weighted discrete Poisson regression on national survey mortality follow-up data to
estimate annual mortality rates among adults with diabetes.

Methods: To estimate mortality among US adults with diabetes, we applied a weighted discrete time-to-event
Poisson regression approach with post-stratification adjustment to national survey data. Adult participants aged 18
or older with and without diabetes in the National Health Interview Survey 1997–2004 were followed up through
2006 for mortality status. We estimated mortality among all US adults, and by self-reported diabetes status at
baseline. The time-varying covariates used were age and calendar year. Mortality among all US adults was validated
using direct estimates from the National Vital Statistics System (NVSS).

Results: Using our approach, annual all-cause mortality among all US adults ranged from 8.8 deaths per 1,000
person-years (95% confidence interval [CI]: 8.0, 9.6) in year 2000 to 7.9 (95% CI: 7.6, 8.3) in year 2006. By comparison,
the NVSS estimates ranged from 8.6 to 7.9 (correlation = 0.94). All-cause mortality among persons with diabetes
decreased from 35.7 (95% CI: 28.4, 42.9) in 2000 to 31.8 (95% CI: 28.5, 35.1) in 2006. After adjusting for age, sex, and
race/ethnicity, persons with diabetes had 2.1 (95% CI: 2.01, 2.26) times the risk of death of those without diabetes.

Conclusion: Period-specific national mortality can be estimated for people with and without a chronic condition
using national surveys with mortality follow-up and a discrete time-to-event Poisson regression approach with
post-stratification adjustment.
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Background
National surveillance of incidence, prevalence, and mor-
tality is key to guiding and evaluating progress in chronic
disease control and prevention. The prevalence of a
chronic disease like diabetes can be affected by increasing
incidence among persons without the disease as well as
decreasing mortality among persons with the disease.
Good estimates of mortality among persons with a
chronic disease improve understanding of secular changes
in prevalence, incidence, and mortality and their relation-
ships. Since diabetes is often not recorded on death certifi-
cates as a direct, underlying, or contributing cause of
death, the impact of diabetes on deaths in the United
States population could be underestimated [1, 2]. The
linkage of nationally representative surveys that include
baseline disease status with mortality follow-up provides
the opportunity to examine all-cause and cause-specific
mortality among persons with diabetes or other chronic
conditions.
From the policymaking and resource allocation per-

spectives, a cross-sectional estimate of mortality by cal-
endar period (e.g., year) is highly desirable. Analyses of
mortality follow-up data typically use survival ap-
proaches to examine the association between risk factors
and death. In these analyses, the data are analyzed as a
cohort covering the entire follow-up period, and the haz-
ard of death is estimated for the cohort. However, this
approach does not permit estimation of the hazard of
death across time periods, nor does it provide valid an-
nual or other calendar period estimates.
By following the conceptual framework of age-period-

cohort analysis (APC) as represented by the Lexis dia-
gram, multi-year cohort data can be decomposed into
discrete time-to-event data and aggregated by calendar
period [3, 4]. Calendar period all-cause mortality rates
can be calculated by simply using the total number of
deaths divided by the total person-years in each calendar
period. Poisson regression, a generalized linear model, is
appropriate for modeling unadjusted and adjusted mor-
tality rates of multiple periods [4]. Discrete Poisson re-
gression yields identical estimates to the piecewise
exponential model, which is another alternative to the
Cox proportional hazards model [5]. Nevertheless, most
discrete time-to-event studies use aggregated group data
and categorized independent variables [6]; we are not
aware of previous publications using discrete Poisson re-
gression applied to multi-year mortality follow-up data
from national sample surveys.
In this study, to increase the awareness of estimating

cross-sectional period mortality using multi-year national
survey mortality follow-up data, we describe the construc-
tion of discrete survival time data in detail and demon-
strate our approach from data preparation to data
analysis. With diabetes as an example, we use population-

weighted Poisson regression to model discrete survival
time and estimate annual all-cause mortality by diabetes
status. The US National Health Interview Survey (NHIS)
1997–2004 with mortality follow-up up to 2006 was used
to illustrate this approach; US mortality estimates from
the National Vital Statistics System (NVSS) were com-
pared for validation purposes.

Methods
Continuous time-to-event data
Survival analysis studies the occurrence and timing of
events. Individual time-to-event data includes three
components: the time of study entry (t0), the time of
study exit (t1), and the event (i.e., death (D) or censoring
(C)). In this study, the total follow-up time is the differ-
ence between the end of follow-up (t1, date of death or
date of censor, whichever came first) and the date of the
NHIS baseline interview (t0). We used a modified Lexis
diagram to demonstrate the structure of continuous
time-to-event survival data (Fig. 1 – 1a) [4]. Each par-
ticipant (i)’s follow-up experience, represented by the di-
agonal line segment [from (year_t0i, age_t0i) to (year_t1i,
age_t1i)], is shown on the plot of age versus calendar
year. For clinical trials with a short follow-up time and
matched age, follow-up time is usually used as the time
scale in the survival analysis. For observational epi-
demiological studies with much longer follow-up time and
a diverse age distribution of the observed sample, it has
become popular to use age during follow-up as the time
scale [7–9]. Typical continuous time-to-event data have a
single record for each participant (Table 1 - Part I). For ex-
ample, Person A entered the cohort at 02/06/2000 and
had a total follow-up time of 3.5 years; person B entered
the cohort at 07/02/2003 and had a total follow-up time
of 3.5 years as well.

Discrete time-to-event survival data
To calculate a period-specific mortality rate, we divided
the continuous survival times into discrete calendar years.
Since interviews did not all take place on the first day of
the survey year, to make sure the survival time was allo-
cated correctly we added an individual-specific partial
time period (t_exti), calculated as the difference between
the interview date and the first day of the year, then we di-
vided the extended survival time [(t1−t0) + t_exti] into
years. That is, each person’s total continuous survival time
was discretized into multiple records, one for each calen-
dar year. An individual’s survival time for a given calen-
dar year was between 0 and 1 year, and the survival
time in the first year was [1–t_exti]. In the analysis, age
and calendar year were treated as time-varying (i.e.,
time-dependent) covariates. The age during each
discrete period was assigned as the age on the first day
of that calendar year.
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With each participant contributing multiple discrete
person-years during the follow-up, the sum of a per-
son’s discretized annual person-years is equal to the
total continuous survival time of that person (Fig. 1 –
1b). For example in Table 1 – Part II, person A was
interviewed on 02/06/2000 at age 70.3 years and con-
tributed 3.5 person-years of follow-up. That is, person
A contributed 0.9 person-years in 2000 with age of
70.2 years at the beginning of year 2000, contributed 1
person-year in each of years 2001 and 2002 with age of
71.2, and 72.2 years at the beginning of those years, re-
spectively, and in 2003, person A contributed 0.6
person-years before dying on 08/08/2003 at age
73.2 years at the beginning of the year. In this way, the
continuous time-to-event survival records of partici-
pants have been decomposed into discrete survival time
with time-varying age.

US national health interview survey and mortality
follow-up
We used the NHIS mortality follow-up data to demon-
strate our approach. The NHIS, conducted by the Cen-
ters for Disease Control and Prevention’s National
Center for Health Statistics (NCHS), is an annual on-
going nationally representative cross-sectional household
interview survey of US non-institutionalized civilians of
all ages [10]. The sampling plan covers the 50 states and
the District of Columbia, and follows a multistage area
probability design that permits the representative sam-
pling of households and non-institutional group quar-
ters. The annual response rate of NHIS is approximately
80% of the eligible households in the sample [10]. All in-
formation about sex, race/ethnicity (non-Hispanic white,
non-Hispanic black, Hispanic, and others), and diabetes
status was self-reported. Participants were classified as

Fig. 1 Follow-up of seven participants from 2000–2006 in continuous (1a) and discrete (1b) time-to-event format. The dot at the right end of
lines represent death. Four participants were interviewed in 2000 and three participants were interviewed in 2003. All seven participants were
followed up to the event or end of year 2006. For part 1a, both calendar year and age during the follow-up are shown as continuous variables.
For part 1b, the time-to-event was split yearly; the y-axis shows the discretized age during the follow-up calendar year using the age at the first
day of the year. The discrete age increased yearly with the follow-up
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having diabetes if they answered “yes” to the question
“Other than during pregnancy, have you EVER been told
by a doctor or other health professional that you have
diabetes or sugar diabetes?”
For our analysis, we selected the NHIS 1997 to 2004

surveys as the baseline, with mortality follow-up up
through 2006; the NHIS 2005 to 2006 surveys were used
to obtain the demographic distribution for the post-
stratification reweighting of those two years. We in-
cluded 307,280 adults aged 18 to 84 years from the
NHIS 1997 to 2004 (range: 30,141 to 35,437 per year)
and followed them through 2006. We excluded 15,882
(range: 1,723 to 2,642 per year) respondents because of
insufficient identifying data to create a death status rec-
ord, which yielded a final mortality follow-up sample of
242,397 (range: 29,076 to 29,193 per year) adults. The
mortality follow-up sampling weights provided by NCHS
accounted for excluded respondents.
Diabetic death was defined as a death with an associ-

ated International Classification of Diseases, 10th Revi-
sion (ICD-10) code of E10-E14. All-cause with diabetes
death was defined as a person with diabetes who died of
any cause. The total weighted person-time was used as
the denominator for mortality calculation. We also esti-
mated mortality by self-reported diagnosed diabetes at
baseline. To validate our findings empirically, we com-
pared the all-cause and diabetic mortality rates from
NHIS with mortality rates from the NVSS, the funda-
mental source of US cause-of-death information. Mor-
tality rates from the NVSS were directly calculated as
number of death (all-cause or diabetic death coded as
E10 to E14) divided by total population using structured
query language from CDC WONDER by following the
step-by-step instruction on the WONDER website
(http://wonder.cdc.gov/mortSQL.html).
To reduce potential selection bias due to respondents

being healthier than non-respondents, we excluded each
individual’s first two years of follow-up. The final analyt-
ical discrete time-to-event data set included adults aged
20 years or older during the years 2000 to 2006.

Poisson regression
Poisson regression was used to analyze and estimate the
mortality rate [11]. The mortality (hazard) rate can be
estimated using the following equation when follow-up
times (pt) vary across individuals:

log dð Þ ¼ log ptð Þ þ β0 þ
X

βiXi;

then; mortality rate ¼ d=pt ¼ exp β0 þ
X

βiXi

� �

Here, the natural logarithm of the expected value of
the event, log(d), with an offset of natural logarithm of

follow-up time, log(pt), is a linear combination of inde-
pendent covariates, Xi, with regression parameters βi,.
Poisson regression provided the estimate of mortality

for each calendar year/period. We used the robust error
variances estimation approach to minimize over-
dispersion [12] and the polynomial function of calendar
time to smooth year-to-year variation in mortality rates
[6, 13]. To smooth the variation in mortality due to low
mortality rates in some age subgroups, the age at the be-
ginning of a calendar year was defined as a continuous
variable with polynomial terms (quadratic polynomial).
The mortality rates in our study were estimated by the
predictive margins of the regression coefficients from
the Poisson model.

Adjusted sampling weights for the discrete
time-to-event data
The age of sampled participants in each survey cohort
increased with the year of follow-up and those multi-
year survey cohorts also overlapped time periods.
Without accounting for the demographic discrepancy
between the participants from different cohorts and
the US population at each specific year, the demo-
graphic distribution of a discrete period after the
baseline year would not represent the demographic dis-
tribution of the US population at that specific year or
time-period, and the total crude mortality of the US
population would be biased toward the older popula-
tion. In order to correct for these issues, we adjusted
the sample weights using a post-stratification proced-
ure in which sampled units were divided into sub-
groups based on age, sex, and race/ethnicity; we used
the nationally representative weighted size of each sub-
group of NHIS 2000 to 2006 at interview to estimate the
US population size. The analysis weights for the discrete
time-to-event data were reweighted proportionally. The
adjusted analysis weights thus sum to the US population
size within each subgroup. The sum of the analysis
weights equaled the total non-institutionalized US popula-
tion for each calendar year.

Analysis
We used Stata 13.1 (StataCorp LP, College Station,
Texas) to account for the complex multistage sampling
design and to produce weighted estimates and 95% con-
fidence intervals (CI).
For all comparisons we used a two-sided statistical test

with significance defined as p value (p) <0.05 or a 95%
CI that did not include the null value. The ggplot2 pack-
age of R was used to produce graphics [14].

Results
From 1997 to 2006, the US population increased in total
numbers and mean age, decreased in the proportion
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non-Hispanic white, and increased in prevalence of dia-
betes (all p values <0.001). The unweighted total number
of deaths by year in the NHIS follow-up sample in-
creased from 614 in year 2000 to 2,046 in 2006 (Table 2).
The weighted total numbers of deaths from the NHIS
follow-up (data not shown) were less than, but very close
to, the total numbers of deaths of all US adults aged 20
to 84 years using the NVSS (Table 2).
To show the importance of post-stratification

reweighting, we compared the NHIS follow-up estimates
with the results from NVSS and the NHIS estimates that
used the original weights (Table 2). Mortality estimates
using the original sampling weights without post-
stratification adjustment were higher than the mortality
estimates using adjusted sampling weights, because of
the aging of cohorts during the follow-up. Mortality in
each year from the NVSS was within the 95% CIs of
mortality rates from the NHIS using the adjusted sam-
pling weights. The average annual decrease in crude
mortality (per 1,000 person-years) was 0.12 for both the
NHIS and the NVSS. The correlation of NHIS and the
NVSS mortality was 0.94. Age-sex-race/ethnicity-ad-
justed mortality decreased 2.6% per year (p < 0.001).
The all-cause mortality rate among adults with dia-

betes was 1.8 per 1,000 person-years, which is much
higher than the diabetic mortality rate of 0.3 per 1,000
person-years. Table 3 shows that annual diabetic mortal-
ity rates using NHIS (M1) (range: 0.25-0.42) were similar
to mortality using NVSS (M0) (range: 0.27-0.29), while
all-cause mortality rates among those with self-reported
diabetes (M2) were much higher (1.66-1.94). Among
adults with diabetes, age-sex-race/ethnicity adjusted

mortality decreased 3.7% per year (p = 0.011). Diabetic
mortality (M3) accounted for approximately 13.0% (95%
CI: 12.8%, 13.2%) of the all-cause mortality (M4).
Among adults without diabetes at baseline, 0.08 per
1,000 person-years died from diabetes (M5).
To demonstrate the flexibility of our approach, we

calculated the sex-race/ethnicity-adjusted, age-specific,
all-cause mortality by diabetes status at baseline using
polynomial Poisson regression (Fig. 2). In summary,
adults with diabetes at baseline had 2.31 (95% CI: 2.12,
2.50) times the risk of death compared with adults with-
out diabetes (after adjusting for sex and race/ethnicity).

Discussion
Period mortality among persons with chronic conditions
such as diabetes is an important surveillance indicator of
disease prevention and control. However, since chronic
disease status is not reported in many vital statistics
registries, it is often not possible to use vital statistics
data to estimate mortality of persons with and without
the condition. This presents a particular limitation for
diabetes-related death statistics because diabetic death is
often not recorded on US death certificates as a direct
underlying or contributing cause of death, and diabetic
deaths in the US population could be underestimated by
solely using death certificate information [1, 2]. Assem-
bly of national cohorts by linking national survey data
with vital statistics provides a potential remedy to the
data gap, but requires specific methods to permit esti-
mation of period effects. In this study, we described the
use of weighted discrete Poisson regression to estimate
national mortality rates by diabetes status using a

Table 2 All-cause mortality rates of US adults aged 20 to 84 years (per 1,000 person-years and 95% CI) by calendar year using
discretized survival time, NVSS and NHIS follow-up

2000 2001 2002 2003 2004 2005 2006

National Vital Statistics System

All-cause deaths, n 1,690,834 1,697,147 1,708,100 1,706,555 1,672,235 1,691,092 1,671,006

Population, n 196,709,054 199,749,920 202,082,985 204,215,941 206,505,061 208,818,040 211,189,565

All-cause mortality
(M0)a

8.60 8.50 8.45 8.36 8.10 8.10 7.91

NHIS mortality follow-up with the post-stratification sampling weights

All-cause deaths, n 614 874 1,124 1,417 1,638 1,869 2,046

Sample adults, n 60,395 86,722 114,050 141,678 166,593 190,342 214,530

Person-years 60,070 86,274 113,501 140,958 165,769 189,394 212,803

All-cause mortality
(M1)b

8.81 (8.00, 9.62) 8.45 (7.75, 9.14) 8.35 (7.77, 8.93) 8.39 (7.89, 8.89) 7.98 (7.54, 8.42) 8.11 (7.65, 8.58) 7.94 (7.56, 8.33)

NHIS mortality follow-up with original sampling weights

All-cause mortality
(M2)b

8.99 (8.17, 9.82) 8.80 (8.08, 9.52) 8.67 (8.07, 9.28) 8.83 (8.31, 9.36) 8.41 (7.95, 8.87) 8.58 (8.10, 9.06) 8.36 (7.95, 8.77)

(M2 – M1) 0.18 (−0.97, 1.33) 0.35 (−0.65, 1.35) 0.32 (−0.53, 1.17) 0.44 (−0.29, 1.17) 0.43 (−0.19, 1.05) 0.47 (−0.18, 1.12) 0.42 (−0.15, 0.99)
aAll-cause mortality from the NVSS was calculated as the number of the US all-cause deaths divided by the total US adults
bAll-cause mortality from the NHIS was calculated as the weighted number of deaths divided by the total weighted person-years
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complex sample survey, and we validated this ap-
proach using mortality registry estimates. Our study
showed that all-cause mortality of US adults esti-
mated by the NHIS mortality follow-up decreased
2.6% per year from 2000 to 2006, which was similar
to mortality rates estimated using the NVSS mortality
registry data. Meanwhile all-cause mortality of US
adults with diabetes decreased 3.7% per year during
the same period [1, 2].
The method that is most often used to analyze mortal-

ity cohort data is the Cox proportional hazards regres-
sion model, which is useful for analyzing the data from
the association or cause-effect relationship perspective.
However, it is cumbersome to use this method to calcu-
late hazard rates for a large number of combinations of
predictors. Alternatively, parametric survival models can
be more convenient for predicting, but cannot deal eas-
ily with time-varying covariates [15].

Age-period-cohort (APC) analysis provides a third
option. If a vital statistics registry includes complete
information on disease status, the APC method can
be used to estimate the annual/period mortality
among persons with and without diabetes [4, 6, 11,
16–18]. In the US, diabetes status is not recorded in
the national vital statistics registry system. So we
cannot apply this method directly. However, US na-
tionally representative survey mortality follow-up
data provide information on both diabetes status and
death status. The APC model and life table frame-
work can be applied to these data.
The APC analysis has been applied in demography, so-

cial science, and disease surveillance research using
cross-sectional registration or survey data for a long
time [19]. The data are usually cross-sectional and
grouped for data analyses. One of the major purposes of
these studies was to separate the age, period, or cohort

Table 3 Diabetica and all-cause with diabetesb mortality rates (per 1,000 person-years and 95% CI) of US adults aged 20 to 84 years
by calendar year using discretized survival time data, NVSS and NHIS follow-up

2000 2001 2002 2003 2004 2005 2006

National Vital Statistics System

Diabetic death, n 55,661 57,105 58,431 59,164 58,123 59,108 57,260

Population, n 196,709,054 199,749,920 202,082,985 204,215,941 206,505,061 208,818,040 211,189,565

Diabetic mortality (M0)c 0.28 0.29 0.29 0.29 0.28 0.28 0.27

NHIS mortality follow-up: total adults with and without diabetes

Diabetic deaths, n 24 32 55 61 55 79 69

Diabetic mortality (M1)d 0.26 (0.14, 0.37) 0.29 (0.18, 0.41) 0.42 (0.28, 0.57) 0.34 (0.23, 0.44) 0.26 (0.18, 0.34) 0.30 (0.21, 0.38) 0.25 (0.18, 0.33)

All-cause with diabetes
death, n

123 196 249 310 344 408 440

All-cause with diabetes
mortality (M2)e

1.78 (1.43, 2.13) 1.94 (1.59, 2.30) 1.80 (1.51, 2.09) 1.80 (1.55, 2.05) 1.63 (1.42, 1.83) 1.70 (1.51, 1.88) 1.66 (1.48, 1.83)

NHIS mortality follow-up: adults with diagnosed diabetes

Diabetic deaths, n 15 22 45 51 44 56 47

Diabetic mortality (M3)f 3.50 (1.48, 5.51) 4.04 (2.08, 6.01) 7.03 (4.34, 9.72) 5.76 (3.85, 7.67) 4.04 (2.57, 5.51) 4.41 (2.94, 5.88) 3.06 (2.09, 4.03)

All-cause deaths, n 123 196 249 310 344 408 440

All-cause mortality (M4)g 35.7 (28.4, 42.9) 39.5 (32.4, 46.5) 36.1 (30.4, 41.8) 35.6 (30.7, 40.5) 31.7 (27.8, 35.6) 33.0 (29.4, 36.5) 31.8 (28.5, 35.1)

M3/M4, % 9.80 (9.05, 10.56) 10.13 (9.39, 10.86) 19.39 (18.76, 20.02) 16.29 (15.76, 16.82) 12.62 (12.20, 13.03) 13.37 (13.00, 13.75) 9.75 (9.40, 10.10)

NHIS mortality follow-up: adults without diagnosed diabetes

Diabetic death, n 9 10 10 10 11 23 22

Diabetic mortality (M5)h 0.09 (0.03, 0.15) 0.10 (0.03, 0.17) 0.08 (0.03, 0.13) 0.05 (0.02, 0.08) 0.05 (0.02, 0.09) 0.07 (0.04, 0.11) 0.10 (0.05, 0.16)

aDiabetic death was defined as a person had a underlying cause of death as diabetes (ICD-10: E10-E14)
bAll-cause with diabetes death was defined as a person with diabetes and died of any cause
cDiabetic mortality from the NVSS was calculated as the total number of diabetic death divided by the total number of US adults
dDiabetic mortality from the NHIS mortality follow-up was calculated as the weighted number of diabetic death divided by the weighted person-years of adults
with and without diabetes
eAll-cause with diabetes mortality from the NHIS mortality follow-up was calculated as the weighted number of deaths with diabetes divided by the weighted
person-years of total adults
fAmong adults with diabetes, diabetic mortality from the NHIS mortality follow-up was calculated as the weighted number of diabetic death divided by the
weighted person-years of adults with diabetes
gAmong adults with diabetes, all-cause mortality from the NHIS mortality follow-up was calculated as the weighted number of all-cause deaths divided by the
weighted person-years of adults with diabetes
hAmong adults without diabetes, diabetic mortality from the NHIS mortality follow-up was calculated as the weighted number of diabetic death divided by the
weighted person-years of adults without diabetes
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effects using cross-sectional data [20]. In our study, we
applied the concept and analytic framework of this
widely used APC model. Compared to traditional APC
models, our study had several differences. First, our
study used longitudinal national complex survey mortal-
ity follow-up data. Second, the purpose was to estimate
period mortality, which is a sum of the age and cohort
effects. Finally, to account for the aging of the cohort
during follow-up, we post-stratified the aggregated mul-
tiple segments from different survey cohorts using the
US population structure at each period.
Both Poisson and logistic regression can be used for

discretized time-to-event data analysis. Efron combined
the logistic regression with discrete time-to-event sur-
vival time by 1-month intervals and obtained direct esti-
mates of the hazard rates [21]. A polynomial or spline
model can be used to smooth out the random variation/
noise. This partial logistic regression gives good esti-
mates when the discrete time interval is small. Neverthe-
less, a Poisson regression that accounts for person-time
of follow-up gives more accurate hazard rate estimates
for longer discrete time intervals than a logistic regres-
sion. Poisson regression has been used frequently to
compare mortality rates among different categories of
cohorts in epidemiological studies and is a convenient
alternative to Cox proportional hazards regression espe-
cially when the proportional hazards assumptions are
not met [5]. Early studies on the analysis of cohort sur-
vival data showed that Poisson regression is a straight-
forward and intuitive approach for directly estimating
the hazard rates while incorporating time scale as a co-
variate in the model [16, 22]. We were interested in
annual (or longer) time periods rather than monthly or

daily periods and thus discrete Poisson regression was
chosen for our analysis.
To obtain valid national estimates from a complex sam-

ple survey, it is critical to use proper statistical methods to
account for the sample design and sampling weights. Our
study shows that in later years, the distribution of age in
the follow-up cohort shifted to the right; thus without
post-stratification reweighting, the overall mortality rates
combining all ages would have been overestimated. Using
the US population as the standard population for post-
stratification re-weighting yielded all-cause and diabetic
mortality estimates that were similar to the national
registry estimates. Our study demonstrated that discrete
Poisson regression with post-stratification is a feasible ap-
proach for estimating annual mortality for the US popula-
tion with and without diabetes.
The major limitation of our approach is the amount of

time needed to discretize and analyze a large sample with
long follow-up time. Poisson regression using complex
sample data is computationally time-consuming with large
discretized person-time datasets because data cannot be
collapsed over covariates to account for the design-based
analysis of complex sample data. Estimation based on a
small number of events can create problems with model
convergence. Without careful programming and reweight-
ing, the results can be biased. In addition, the NHIS
mortality data represented deaths among the civilian non-
institutionalized population with person-year as the de-
nominator, whereas mortality data from the NVSS
represented deaths among the entire US population with
the whole population at risk as the denominator. Thus,
mortality rates from the two systems might have subtle
differences.

Fig. 2 Sex-race/ethnicity-adjusted, age-specific, all-cause mortality by diabetes status estimated by polynomial Poisson regression
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To demonstrate our approach, we used self-reported
diabetes. While any self-reported condition is subject to
recall error, the self-report of diabetes is considered a
valid measure of diagnosed diabetes [23]. Although it is
recognized as being non-sensitive, it has been shown to
be highly specific [24]. Another source of bias may arise
from the lack of information about diabetes status be-
tween the baseline interview and death or censoring.
Even though the rate of remission from diabetes to non-
diabetes is likely small [25], the lack of information on
incident cases would likely lead to an overestimation of
diabetes duration. Furthermore, if incident cases have a
higher mortality rate than non-cases and a lower mortal-
ity rate than prevalent cases, then lacking this informa-
tion on incidence could lead to an overestimation of
mortality rates for the populations both with and with-
out diabetes. Future analyses with information with mul-
tiple follow-up visits could quantify the impact of this
bias. We demonstrated that weighted discrete Poisson
regression is an efficient applicable approach to estimate
period mortality from the national mortality follow-up
data. To our knowledge, there has been no similar re-
port, though all the steps of this approach are well estab-
lished. Several reasons could explain the scant usage of
the discrete Poisson regression approach, including lack
of data availability, lack of its inclusion as part of biostat-
istics educational curricula, the computing time required
to analyze discrete time-to-event data, and the complex
sampling design of national surveys, which further com-
plicates using this approach. However, the increasing
availability of more powerful statistical software and
computing capabilities permits a revisitation of this
method for the analysis of national survey mortality
follow-up data.

Conclusions
We conclude that combining national follow-up cohorts
from multiple survey years and analyzing them using
population weighted discrete Poisson regression can
yield annual national mortality rates by disease status.
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