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Abstract

Background: Computer-coded verbal autopsy (CCVA) is a promising alternative to the standard approach of
physician-certified verbal autopsy (PCVA), because of its high speed, low cost, and reliability. This study introduces a
new CCVA technique and validates its performance using defined clinical diagnostic criteria as a gold standard for
a multisite sample of 12,542 verbal autopsies (VAs).

Methods: The Random Forest (RF) Method from machine learning (ML) was adapted to predict cause of death by
training random forests to distinguish between each pair of causes, and then combining the results through a
novel ranking technique. We assessed quality of the new method at the individual level using chance-corrected
concordance and at the population level using cause-specific mortality fraction (CSMF) accuracy as well as linear
regression. We also compared the quality of RF to PCVA for all of these metrics. We performed this analysis
separately for adult, child, and neonatal VAs. We also assessed the variation in performance with and without
household recall of health care experience (HCE).

Results: For all metrics, for all settings, RF was as good as or better than PCVA, with the exception of a
nonsignificantly lower CSMF accuracy for neonates with HCE information. With HCE, the chance-corrected
concordance of RF was 3.4 percentage points higher for adults, 3.2 percentage points higher for children, and 1.6
percentage points higher for neonates. The CSMF accuracy was 0.097 higher for adults, 0.097 higher for children,
and 0.007 lower for neonates. Without HCE, the chance-corrected concordance of RF was 8.1 percentage points
higher than PCVA for adults, 10.2 percentage points higher for children, and 5.9 percentage points higher for
neonates. The CSMF accuracy was higher for RF by 0.102 for adults, 0.131 for children, and 0.025 for neonates.

Conclusions: We found that our RF Method outperformed the PCVA method in terms of chance-corrected
concordance and CSMF accuracy for adult and child VA with and without HCE and for neonatal VA without HCE. It
is also preferable to PCVA in terms of time and cost. Therefore, we recommend it as the technique of choice for
analyzing past and current verbal autopsies.
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Introduction
Verbal autopsy (VA) is a technique for measuring the
cause-specific mortality burden for deaths that occur
outside of hospitals. In VA, a trained interviewer collects
detailed information on signs and symptoms of illness

from laypeople familiar with the deceased. These inter-
views are analyzed by experts or by computer to esti-
mate 1) the cause of death for each individual and 2)
the distribution of causes of death in a population. This
information can then be used by policy developers,
donors, governments, or decision-makers to choose
wisely in developing, requesting, and allocating health
resources. For VA to provide useful information to indi-
viduals or to society, it is essential that the results of
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these interviews be mapped to the underlying cause of
death accurately and quickly. Physician-certified verbal
autopsy (PCVA) is currently the most common
approach to mapping VA interviews to underlying cause
of death, but this approach is expensive and time-con-
suming [1].
Machine learning (ML) methods are computer algo-

rithms that infer patterns from examples [2]. In a classifi-
cation task like VA analysis, an ML method processes a
set of examples ("training data”) that has gold standard
classifications, and develops a model to classify additional
data. Developing and refining ML methods is a vibrant
area of research in computer science, and numerous new
methods have been introduced over the past 50 years. One
influential ML method, the artificial neural network
(ANN), was applied to VA 10 years ago [3]. This approach
was deemed potentially useful, pending further evaluation.
By casting VA analysis as an application of general ML
methods, incremental advances in ML techniques can be
directly applied to improve the accuracy of VA analysis.
The Random Forest (RF) is an exciting innovation in

ML technology [4]. The RF has been used extensively in
many domains for classification tasks, and is consistently
one of the top approaches [5]. Examples of using ML
techniques in various domains include gene selection and
classification of microarray data [6], modeling structural
activity of pharmaceutical molecules [7], and protein
interaction prediction [8]. For this study, we developed
an application of the RF Method to VA analysis and
compared the performance of RF to PCVA.

Methods
An overview of random forests
Our RF Method for VA analysis seems complicated at
first, but is actually a combination of several simple ideas.
The first of these is the “decision tree,” a structure for
representing a complex logical function concisely as
branching decisions [9]. The decision trees in Breiman’s
Random Forest method are generated by a randomized
algorithm from bootstrap-resampled training data, but the
resulting trees are somewhat analogous to the expert algo-
rithms used in early approaches to automatic VA analysis.
In Figure 1, Panel a shows a decision-tree representation
of an expert algorithm for deciding if a child death was
due to malaria or other causes [10], while Panel b depicts
decision trees generated as part of the random forest for
distinguishing maternal sepsis from HIV deaths. In each,
the decision between two possibilities is made by starting
from the top level, and progressing to the next level
following the branch to the right if the symptom at the
current level was endorsed and to the left otherwise. For
example, the expert algorithm in Figure 1a will only pre-
dict that the cause was malaria if the respondent said that

the decedent had fever and convulsions and no stiff neck,
no bulging fontanelle, and no measles.
Unlike expert algorithms, however, the decision trees

in Breiman’s Random Forest are generated automatically
from labeled examples (the training dataset), without
guidance from human experts. Instead, a random resam-
pling of the training dataset is generated by drawing
examples with replacement from the training dataset,
and then a decision tree is constructed sequentially
from this, starting from the root. At each node, the
algorithm selects a random subset of signs and symp-
toms to consider branching on, and then branches on
the one that best distinguishes between the labels for
examples relevant to that node, halting when all relevant
examples have the same label. Because of the random-
ness in this process, running the approach repeatedly on
the same training dataset yields different trees, and two
such trees are depicted in Figure 1b.
Breiman’s original formulation of RF proposed gener-

ating hundreds or thousands of decision trees this way,
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Figure 1 Expert algorithm and RF decision trees. A right branch
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Decision tree representation of expert algorithm to identify malaria
deaths in child VAs (one-versus-all approach); b) Two random
decision trees generated by RF to distinguish AIDS deaths from
maternal sepsis deaths (one-versus-one approach).
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and then using them for prediction by calculating the
prediction of each tree and taking a vote between their
predictions. However, because of the long length of the
cause list in verbal autopsy, we followed the “pairwise
coupling” approach developed by Hastie [11]. We con-
sidered every pair of causes on the cause list, and gener-
ated 100 decision trees to distinguish between each pair.
This resulted in a table of random forests, depicted
schematically in Figure 2. The size of the forest was
thus a function of the length of the cause list; for exam-
ple, for the child VA module, the 21 causes produced a

random forest of
(
21
2

)
× 100 = 21, 000 trees.

To aggregate the predictions of all of these trees, we
tallied cause-specific scores by counting the number of
trees that predicted each cause. We then normalized the
score for each cause using a novel ranking procedure.
The complete process of mapping from scores through
ranks to predictions is demonstrated in Figure 3, where,
for example, Test C is predicted to be caused by Cause
1, which is not the highest scored cause for this exam-
ple, but is the highest ranked cause. The full process is
as follows: the Test Score Matrix is converted to a Test
Rank Matrix on an entry-by-entry basis, by finding the
rank of each entry among the corresponding column in
the Train Score Matrix. For example, Test A, Cause 3
has score 20, which is the second-highest score when
compared with the Cause 3 column of the Train Score
Matrix, so it has a rank of 2 in the Test Rank Matrix.
After Test A had Cause 1 and Cause 2 ranked similarly,
the procedure predicted that Test A was caused by
Cause 3 because this is the cause that was highest
ranked for A. This is a nonparametric form of whiten-
ing, which makes the scores for different causes directly
comparable. This approach has a natural generalization
to predicting multiple causes for a single death, where
the second-highest ranked cause is predicted as the sec-
ond most likely, etc.

Validation using the PHMRC gold standard test/train
datasets
The Population Health Metrics Research Consortium
(PHMRC) gold standard verbal autopsy validation study

provides a large multisite dataset to assess the perfor-
mance of new or existing verbal autopsy methods. The
PHMRC study identified deaths that met defined clinical
diagnostic criteria for cause of death. Then, interviewers
visited the households of the deceased to conduct full
verbal autopsies. Thus, the gold standard cause of death
is paired with the responses from a verbal autopsy. The
numbers of records from each site are provided in
Table 1. As part of the PHMRC study, all variables
including free-text were converted into a series of
dichotomous items. All aspects of the study are
described elsewhere in more detail [12]. Additional files
1, 2, and 3 list the 40 most informative variables for
each cause in the adult, child, and neonatal modules
after this data preparation phase was completed.
Murray et al. have shown that many traditional

metrics of performance, such as specificity or relative
and absolute error in CSMFs, are sensitive to the CSMF
composition of the test dataset [13] and recommend
that robust assessment of performance be undertaken
on a range of test datasets with widely varying CSMF
compositions. Further, metrics of individual concor-
dance need to be corrected for chance to adequately
capture how well a method does over random or equal
assignment across causes.
The PHMRC has developed a set of 500 test/train splits

of the data, which we analyzed. The splits were generated
randomly, stratified by cause. Each has a random 75% of
examples of each cause in the training set and 25% in the
test set. For each split, we used the training data to gen-
erate random forests for each pair of causes and then we
applied these forests to the test dataset. We never
allowed contamination between the training data and the
test data - they were kept strictly separate in all steps of
the analysis. Further, the cause composition of the test
dataset is based on a random draw from an uninforma-
tive Dirichlet distribution. The Dirichlet distribution
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Figure 2 Schematic representation of RF.

Cause 1 Cause 2 Cause 3

Test A 10 10 20 

Test B 5 16 18 

Test C 13 10 14 

Test D 12 9 13 

Test Score Matrix Test Rank Matrix 
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Train A 10 9 25 
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Train E 3 2 18 
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Figure 3 Schematic representation of “ranking” technique for
cause prediction from random forest scores.
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specifies random fractions that sum to 1. Each test split is
resampled with replacement to meet the cause fractions
specified by a Dirichlet draw. Consequently, each test
split has a different distribution of cause fractions, and
the cause composition of the training data and test data
are always different.
We assessed the performance of RF at assigning indivi-

dual causes of death using median chance-corrected con-
cordance by cause across the 500 test datasets and the
median average chance-corrected concordance across
causes in the 500 test datasets, following the recommenda-
tions of Murray et al [13]. For assessing the performance
of RF in estimating CSMFs, we calculated the median
CSMF accuracy as well as slope, intercept, and root mean
squared error (RMSE) of a linear regression for each cause
as a summary of the relationship between estimated
CSMFs for a cause and the true CSMF in a particular test
dataset [13]. We benchmark RF against PCVA on the
same dataset using the results reported by Lozano et al
[14].
Murray et al. analyzed data in China two ways: includ-

ing all items and excluding items that reflected the
decedent’s health care experience (HCE) [15]. The pur-
pose of excluding the HCE items is to assess how RF
would perform on VA for communities without access
to health care. They found, for example, that a consider-
able component of PCVA performance was related to
the household recall of hospital experience or availability
of a death certificate or other records from the hospital.
We assessed the performance of RF in adults, children,
and neonates both with and without the free-response
items and the structured questions that require contact
with health care to answer (marked in Additional files 1,
2, and 3).
There are many potential variations in implementing

RF. Specifically:

• Continuous and categorical variables can be
included as is, or can be dichotomized to reduce
noise
• The training data can be reweighted so that all
causes are represented equally or left as is

• Decision trees can compare cause j to all other
causes at once, or compare cause j to each other
individual cause to come up with “votes”
• The signal-to-noise ratio can be improved by
removing low-information items using the Tariff
Method [16], or all items can be used
• Different numbers of signs and symptoms can be
used at each decision node
• Different numbers of trees can be used in the
forest
• Cause assignment can be based on the highest scor-
ing cause for each death or on ranking the scores and
assigning to the cause with the highest rank

We conducted an extensive sensitivity analysis to
understand the importance of decisions between levels of
Tariff-based item reduction, the choice of number of
signs and symptoms at every decision node (m), the
choice of number of trees (n) in each one-versus-one
cause classification, and the difference between max-
score and max-rank cause assignment. To avoid overfit-
ting the data when selecting between the model variants,
we conducted our sensitivity analysis using splits 1 to 100
and repeated the analysis using splits 101 to 200 and a
random subset of 50 splits. The results of the sensitivity
analysis are included in Additional file 4 and show that
cause assignment by rank is superior to assignment by
score but that the other parameters do not affect chance-
corrected concordance or CSMF accuracy. The results
shown in the next section are all for the one-versus-one
model, with dichotomized variables, with training data
reweighted to have equal class sizes, using the 40 most
important Tariff-based symptoms per cause, m = 5, n =
100, and the max-rank cause assignment, which pro-
duced the highest CSMF accuracy for seven of the first
200 splits of the child VA data with HCE and the highest
chance-corrected concordance for 14.

Results
Individual cause assignment compared to PCVA
Table 2 shows that, for RF over 500 splits, the median
value of average chance-corrected concordance for adult

Table 1 Numbers of VAs collected by site and gold standard level

Site Adult Child Neonate Total

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

Andhra Pradesh, India 1285 269 385 66 376 1 2,382

Bohol, Philippines 998 262 234 30 374 0 1,898

Dar es Salaam, Tanzania 1556 162 366 106 1047 2 3,239

Mexico City, Mexico 1373 215 124 4 313 2 2,031

Pemba Island, Tanzania 266 31 156 105 261 3 822

Uttar Pradesh, India 1277 142 412 87 251 1 2,170

Total 6,755 1,081 1,677 398 2,622 9 12,542
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VAs without HCE was 37.7% (95% uncertainty interval
[UI]: 37.6%, 38%), and for adult VAs with HCE it was
48% (47.8%, 48.2%); for child VAs without HCE it was
46.5% (46.1%, 47%), and for child VAs with HCE it was
51.1% (50.7%, 51.6%). For neonatal VAs without HCE
the median average chance-corrected concordance was
33.5% (33%, 33.9%), and for neonatal VAs with HCE it
was 34.9% (34.5%, 35.4%). Note that the neonate VAs
results presented in the tables for PCVA are for a
shorter cause list that only includes six causes, where all
the preterm delivery causes are grouped together. This
is due to the fact that PCVA performed very poorly on
a cause list with 11 causes.
The differential value of HCE to RF in adult VA is

more substantial than in child or neonatal VAs. Including
HCE responses yields a significant relative increase of
10.3% in median chance-corrected concordance for adult
VA. This could be because adults have more substantial
experience with health care, and hence more relevant
information is generated that aids in VA analysis, or it
could be confounded by the differences between the
adult, child, and neonate cause lists. In PCVA, however,
including HCE responses produces a large increase in
median chance-corrected concordance for all modules.
In all six of these settings, the median chance-corrected
concordance is significantly higher for RF than for PCVA.
Figure 4 shows that partial-cause assignment increases

the partial-cause chance-corrected concordance for all
age groups with and without HCE. The increasing par-
tial-cause chance-corrected concordance as a function
of the number of causes shows that RF contains addi-
tional information in the second, third, etc., most likely
causes. However, as the partial-cause assignment con-
tinues, the added value from new cause assignment
decreases due to the chance-correcting element in the
partial-chance-corrected concordance formula, as
demonstrated by the decreasing slope.
Figures 5, 6, and 7 show the chance-corrected concor-

dance of RF on a cause-by-cause basis for adult, child,
and neonatal VAs with and without HCE (also see Addi-
tional file 5). Figure 8 shows that on a cause-by-cause
basis, RF is better than PCVA with HCE by at least 10

percentage points of chance-corrected concordance for
13 causes for adult deaths (lung cancer, fires, renal fail-
ure, pneumonia, homicide, drowning, cirrhosis leukemia/
lymphomas, breast cancer, prostate cancer, epilepsy, cer-
vical cancer, and poisonings). On the other hand, PCVA
performed substantially better in detecting suicide, acute
myocardial infarction, stomach cancer, other noncom-
municable diseases, and AIDS. In addition, as depicted in
Figure 9, in five causes of child deaths, RF concordance is
at least 10 percentage points higher with HCE (falls, sep-
sis, fires, other cardiovascular diseases, and measles).
Among causes of child deaths, PCVA performed better
in detecting other cancers, drowning, encephalitis, violent
death, diarrhea/dysentery, and other defined causes of
child deaths. Head-to-head comparison of the neonatal
performance between PCVA and RF is not possible
though, as PCVA utilized a shorter cause list.
Another advantage of RF over PCVA is its relatively

consistent performance in the presence and absence of
HCE variables. PCVA concordances vary significantly
with absence of HCE variables (e.g., for 22 causes of
adult deaths, without HCE, concordance decreased by
more than 10 percentage points). On the other hand, RF
concordance only decreases substantially in 15 adult
causes. In addition, RF shows more consistency among
all causes. For example, its minimum median chance-
corrected concordance in adult causes is 7.9% (without
HCE) and 10.7% (with HCE), while minimum median
chance-corrected concordance for PCVA without HCE
is negative for two causes (meaning PCVA did worse
than chance). RF does benefit substantially from HCE
variables for certain important causes, however. For

Table 2 Median chance-corrected concordance (%) for RF
and PCVA, by age group with and without HCE

RF PCVA

Median 95% UI Median 95% UI

Adult No HCE 37.7 (37.6, 38.0) 29.7 (29.4, 29.8)

HCE 48.0 (47.8, 48.2) 44.6 (44.3, 44.8)

Child No HCE 46.5 (46.1, 47.0) 36.3 (35.9, 36.6)

HCE 51.1 (50.7, 51.6) 47.8 (47.1, 48.3)

Neonate No HCE 33.5 (33.0, 33.9) 27.6 (27.2, 28.0)

HCE 34.9 (34.5, 35.4) 33.3 (32.8, 33.7)
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Figure 4 Partial-cause assignment increases partial chance-
corrected concordance for adult, child, and neonate VAs with
and without HCE. Slope of increase is higher between one and
two cause assignments.
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example, for adult deaths due to tuberculosis, AIDS, dia-
betes, and asthma, chance-corrected concordance
increased by more than 20 percentage points when HCE
variables were included.

CSMF estimation compared to PCVA
Table 3 compares the median CSMF accuracy for RF and
PCVA. Over 500 splits, the median value of CSMF

accuracy for RF for adult VAs with HCE was 0.772
(0.769, 0.776), and for adult VAs without HCE it was
0.726 (0.721, 0.730); for child VAs with HCE it was 0.779
(0.775, 0.785), and for child VAs without HCE it was
0.763 (0.755, 0.769); for neonatal VAs with HCE it was
0.726 (0.717, 0.734), and for neonatal VAs without HCE
it was 0.720 (0.71, 0.732). The patterns for this popula-
tion-level estimation quality metric are qualitatively the
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same as those observed in the individual-level metric
above. The value of HCE information is more substantial
for adult VA, although it yielded a smaller increase, chan-
ging the median CSMF accuracy by 0.046. For child VA,
the value is small, where it yields an increase of 0.016,
and for neonate, the HCE value is not significant
(increase of 0.006). In all of these settings except for

neonates with HCE, the median CSMF accuracy was sig-
nificantly higher for RF than for PCVA. For the neonates
with HCE, the difference was not statistically significant,
and the comparison was done for a six cause list for
PCVA and a more challenging 11 cause list for RF.
Figure 10 shows scatter plots of the estimated versus

true CSMF for four select causes of adult deaths (each
of the 500 splits contributes a single point to the scat-
ter). The figure shows how RF estimation quality tends
to be different for different causes. As depicted, RF esti-
mations for AIDS, maternal, and ischemic heart disease
(IHD) are closely correlated with the true CSMFs. How-
ever, for colorectal cancer, estimations are noisier, and
regardless of the true CSMF, RF assigns similar CSMFs
in all 500 splits. To summarize the quality of RF estima-
tion for each cause for all age groups, Additional file 6
shows the slope, intercept, and RMSE from linear
regression of estimated versus true CSMFs. This popula-
tion-level metric of analysis quality gave results qualita-
tively similar to the individual-level metric on a cause-
specific basis. The RF CSMF slopes range from 0.097 to
0.904 for adult VAs, 0.105 to 0.912 for child VAs, and
0.079 to 0.845 for neonatal VAs. PCVA has similar
ranges for the three age groups. However, on a cause-
by-cause basis, PCVA and RF show different characteris-
tics. A comparison revealed that, for the same causes
that the methods have high chance-corrected concor-
dance, the CSMF regression slope is higher for RF. This
shows that RF attains higher cause-specific chance-cor-
rected concordances as a result of better classification,
not simply by assigning a higher portion of deaths to
some causes.
The results of performing RF with a higher number of

trees in each one-versus-one cause classifier showed
that the method is stable by only using 100 trees per
classifier. It should be noted that, while in the literature
it is suggested that increasing the number of trees
increases the classification precision, as our overall RF
Method includes an ensemble of one-versus-one classi-

fiers (e.g., for adult VAs, RF has
(
46
2

)
= 1035 one-ver-

sus-one classifiers, each including 100 trees), the overall
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Figure 9 Scatter of median chance-corrected concordance of
RF versus PCVA, for child module.

Table 3 Median CSMF accuracy for RF and PCVA, by age
group with and without HCE

RF PCVA

Median 95% UI Median 95% UI

Adult No HCE 0.726 (0.721, 0.730) 0.624 (0.619, 0.631)

HCE 0.772 (0.769, 0.776) 0.675 (0.669, 0.680)

Child No HCE 0.763 (0.755, 0.769) 0.632 (0.626, 0.642)

HCE 0.779 (0.775, 0.785) 0.682 (0.671, 0.690)

Neonate No HCE 0.720 (0.710, 0.732) 0.695 (0.682, 0.705)

HCE 0.726 (0.717, 0.734) 0.733 (0.719, 0.743)
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number of trees is high, which results in stable
performance.

Discussion
We found that the RF Method outperforms PCVA for
all metrics and settings, with the exception of having
slightly lower CSMF accuracy in neonates when HCE
was available. Even in this single scenario, the difference
in CSMF accuracy is not statistically significant, and
furthermore, the PCVA analysis for neonates was lim-
ited to a six cause list, while the RF analysis was done
on the full 11 cause list. The degree of the improvement
varies among metrics, among age modules, and with the
presence or absence of HCE variables. When the analy-
sis is conducted without HCE variables, RF is particu-
larly dominant.
The superior performance of RF compared to PCVA

with respect to all of our quality metrics is excellent
because this method also reduces cost, speeds up the

analysis process, and increases reliability. While it may
take days for a team of physicians to complete a VA
survey analysis, a computer approach requires only sec-
onds of processing on hardware that is currently afford-
ably available. In addition, using machine learning leads
to reliability, since the same interview responses will
lead to the same cause assignment every time. This is
an important advantage over PCVA, which can produce
results of widely varying quality among different physi-
cians, according to their training and experience [14].
Despite these strengths of RF, the method does have

weaknesses in individual-level prediction of certain
causes. For example, chance-corrected concordances for
malaria and pneumonia in adults are around 25% even
with HCE. Chance-corrected concordances for encepha-
litis, sepsis, and meningitis in children are in the 15% to
25% range. However, in many applications, it is the
population-level estimates that are most important, and
the linear regression of true versus estimated cause

 

Adult AIDS (with HCE) Adult Colorectal Cancer (with HCE) 

Adult Maternal (with HCE) Adult IHD - Acute Myocardial 
Infarction (with HCE) 

Figure 10 Estimated versus true CSMFs for 500 Dirichlet splits, showing that for selected causes of adult mortality (AIDS, colorectal
cancer, maternal, and IHD), the performance of RF varies. For AIDS and IHD, RF tends to overestimate the cause fraction when the true
CSMF is small and underestimate otherwise. For colorectal cancer, RF mostly assigns the same CSMF regardless of true CSMF, and for maternal
causes, RF is more accurate.
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fraction shows that for these causes, RF has a RMSE of
at most 0.009 for the adult causes and 0.02 for the child
causes. It may be possible to use these RMSEs together
with the slopes and intercepts to yield an adjusted
CSMF with uncertainty.
While the ANN method used by Boulle et al. 10 years

ago [3] showed the potential of using ML techniques,
the RF Method we have validated here has proven that
ML is ready to be put into practice as a VA analysis
method. ML is an actively developing subdiscipline of
computer science, so we expect that future advances in
ML classification will be invented over the coming
years, and VA analysis techniques will continue to bene-
fit from this innovation. During the development of our
approach, we considered many variants of RF. However,
the possibilities are endless, and even some other variant
of RF may improve on the method presented here. For
example, nonuniformly increasing the number of trees
in the forest to have proportionately more for select
causes (in the spirit of Boosting [17]) is a potential
direction for future exploration.
For any ML classifier to be successful, several require-

ments should be met. As discussed earlier, the accuracy
of classification relies considerably on the quality of the
training data (deaths with gold standard cause known to
meet clinical diagnostic criteria). While the PHMRC
study design collected VA interviews distributed among
a wide array of causes from a variety of settings, certain
causes were so rare that too few cases occurred to train
any ML classifier to recognize them. Future studies
could focus on collecting additional gold standard VAs
for priority diseases to complement the PHMRC dataset.
These additional data could improve the accuracy of RF
and other ML models on certain selected causes. Future
research should also focus on assessing VA’s perfor-
mance in different settings. For example, users in India
may be interested specifically in how RF performs in
India instead of across all of the PHRMC sites, particu-
larly if it is possible to train the model only on valida-
tion deaths from India.
All VA validation studies depend critically on the

quality of validation data, and this RF validation is no
exception. A unique feature of the PHMRC validation
dataset, the clinical diagnostic criteria, ensures that the
validation data are very precise about the underlying
cause of death. However, this clinical diagnosis also
requires that the deceased have some contact with the
health system. The validity of the method therefore
depends critically on the assumption that the signs and
symptoms observed in the deaths that occur in hospitals
for a given cause are not substantially different than
deaths from that cause that occur in communities with-
out access to hospitals. We have investigated this
assumption by conducting our analysis with and without

HCE items, which gives some indication of the potential
differences.
The machine learning technique described in this

paper will be released as free open source software, both
as stand-alone software to run on a PC and also as an
application for Android phones and tablets, integrated
into an electronic version of the VA instrument.

Conclusions
We presented an ML technique for assigning cause of
death in VA studies. The optimization steps taken to
improve the accuracy of RF classifiers in VA application
were presented. We found that our RF Method outper-
formed PCVA in chance-corrected concordance and
CSMF accuracy for adult and child VA with and with-
out HCE and for neonatal VA without HCE. In addition,
it is preferable to PCVA in terms of both cost and time.
Therefore, we recommend it as the technique of choice
for analyzing past and current verbal autopsies.

Additional material

Additional file 1: Top 40 items based on Tariff Method for adult
causes (Items that are extracted from open text field are marked
with *, other HCE variables are marked with +).

Additional file 2: Top 40 items based on Tariff Method for child
causes (Items that are extracted from open text field are marked
with *, other HCE variables are marked with +).

Additional file 3: Top 40 items based on Tariff Method for neonate
causes (Items that are extracted from open text field are marked
with *, other HCE variables are marked with +).

Additional file 4: Sensitivity analysis for 54 variants of the RF
algorithm applied to 200 splits of the child VA data with HCE.

Additional file 5: Median chance-corrected concordance (%) across
500 splits, by age group and cause with and without HCE.

Additional file 6: Slope, intercept, and RMSE for linear regression of
true versus estimated CSMF.
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