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Multiple biomarker models for improved risk
estimation of specific cardiovascular diseases
related to metabolic syndrome: a cross-sectional
study
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Abstract

Background: Metabolic syndrome (MetS) is the co-occurrence of several conditions that increase risk of chronic
disease and mortality. Multivariate models for calculating risk of MetS-related diseases based on combinations of
biomarkers are promising for future risk estimation if based on large population samples. Given biomarkers’
nonspecificity and commonality in predicting diseases, we hypothesized that unique combinations of the same
clinical diagnostic criteria can be used in different multivariate models to develop more accurate individual and
cumulative risk estimates for specific MetS-related diseases.

Methods: We utilized adult biomarker and cardiovascular disease (CVD) data from the National Health and Nutrition
Examination Survey as part of a cross-sectional analysis. Serum C-reactive protein (CRP), glycohemoglobin, triglycerides,
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, fasting glucose, and
apolipoprotein-B were modeled. CVDs included congestive heart failure, coronary heart disease, angina, myocardial
infarction, and stroke. Decile analysis for disease prevalence in each biomarker group and multivariate logistic regression
for estimation of odds ratios were employed to measure the joint association between multiple biomarkers and CVD
diagnoses.

Results: Of the biomarkers considered, glycohemoglobin, triglycerides, and CRP were consistently associated with the
CVD outcomes of interest in decile analysis and were selected for the final models. Associations were overestimated
when using single-marker models in comparison with full models; individual odds ratios decreased an average of
16.4% from the single-biomarker models to the joint association models for CRP, 6.6% for triglycerides, and 1.4% for
glycohemoglobin. However, joint associations were stronger than any single-marker estimate. Additionally, reduced
models produced unique combinations of biomarkers for specific CVD outcomes.

Conclusion: The reduced joint association modeling results suggest that unique combinations of biomarkers with their
related measure of association can be used to produce more accurate cumulative risk estimates for each CVD.
Additionally, our results indicate that the use of multiple biomarkers in a single multivariate model may provide
increased accuracy of individual biomarker association estimates by controlling for statistical artifacts and spurious
relationships due to co-biomarker confounding.
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Background
Metabolic syndrome (MetS) is the co-occurrence of sev-
eral conditions to present elevated risk of cardiovascular
disease (CVD), as well as other diseases, including type
II diabetes, fatty liver, and all-cause mortality [1-5]. The
National Cholesterol Education Program’s Adult Treat-
ment Panel III (ATP III) defined six criteria for MetS, in-
cluding central obesity, dyslipidemia, elevated blood
pressure, insulin resistance/glucose intolerance, proin-
flammatory state, and prothrombotic state [3]. MetS is
often indicated clinically by biomarkers including waist
circumference, cholesterol, triglycerides, blood pressure,
fasting glucose, and C-reactive protein (CRP). The ATP
III recommended clinical criteria to diagnose MetS [3]:

� Waist circumference ≥ 102 cm (men), ≥ 88 cm
(women);

� Triglycerides ≥ 150 mg/dL;
� High-density lipoprotein cholesterol (HDL-C) ≤ 40

(men), ≤ 50 (women);
� Systolic blood pressure (SBP) ≥ 130 and/or diastolic

blood pressure ≥ 85; and
� Fasting glucose ≥ 110 mg/dL.

Clinical criteria are important risk factors for CVDs asso-
ciated with MetS, but they are nonspecific. Ridker et al.
used data from the Women’s Health Study to examine po-
tential differences in risk factors between women with and
without nonspecific CVD [6]. They observed significant el-
evations among women with CVD for several biomarkers,
including body mass index (BMI), CRP, total cholesterol
(TC), low-density lipoprotein cholesterol (LDL-C), and
apolipoprotein-B (apoB). Ridker and Anand et al. also
reviewed the literature for use of biomarkers to predict
CVD and observed no evidence of an optimal biomarker
[7]. However, multivariate models calculating risk of disease
based on combinations of biomarkers have provided rea-
sonable estimates and offer promising options for future
risk estimation if based on large populations [8]. Recent
large-scale studies where risk of CVD was estimated
from combinations of biomarkers have included the
Framingham Heart Study [9], the Systematic Coronary
Risk Evaluation system by the European Society of Cardi-
ology [10], and the Prospective Cardiovascular Münster
Study [11]. Although biomarker models are not designed to
predict causality of disease, such multibiomarker associa-
tions are useful for estimating risk.
Given the nonspecificity and overlapping of biomarkers

in predicting disease, we hypothesize that unique combina-
tions of biomarkers can be used in different multivariate
models to develop more accurate risk estimates for specific
MetS-related diseases by reducing statistical artifacts and
spurious relationships due to co-biomarker confounding.
Hence, the objective of this study is to test for unique
models in which multiple MetS biomarkers are employed
jointly to assess more accurately their association with spe-
cific CVDs for different age groups, obtain a cumulative
perspective of their impact on CVD, and provide a basis for
future development of predictive models. Such predictive
models may be used in the future both for estimates of
population risk and to approximate an individual’s risk
based on her/his combination of biomarkers. Decile ana-
lysis and regression are used to test these relationships for
the nationally representative National Health and Nutrition
Examination Survey (NHANES) sample dataset. These
analyses are presented for the purpose of estimating risk ra-
ther than to make a specific assessment of causality.

Methods
Study design
NHANES is comprised of interview (demographics, so-
cioeconomic status, dietary habits, and medical history),
examination (dental, medical, and physiological evalu-
ation), and laboratory segments [12-17]. NHANES uses
a complex, multistage, unequal probability of selection
cluster design to provide a nationally representative sam-
ple of the non-institutionalized US civilian population.
We conducted a cross-sectional study using data from
six independent two-year cycles of publicly available
NHANES data spanning 1999–2010. The NHANES
protocol has been approved by the National Center for
Health Statistics Institutional Review Board, and written
informed consent was obtained from all participants.
NHANES methodology and sample design have been
previously detailed elsewhere [18,19].

Study population
The study population consisted of adults ≥ 20 years who
completed the laboratory component of the survey and
answered questions about their history of CVD and re-
lated health outcomes. Within the target age group, n =
32,458 participants answered questions regarding their
cardiovascular health. The subjects’ health data included
SBP and variables describing if they were ever told by a
health care professional that they had congestive heart
failure (CHF), coronary heart disease (CHD), stroke,
myocardial infarction (MI), or angina. Demographic data
(poverty-income ratio, sex, age, race/ethnicity), smoking
history, and BMI were also employed in the analysis.

Biomarkers
The biomarkers tested included CRP, glycohemoglobin,
plasma fasting glucose, ApoB, TC, LDL-C, HDL-C, and
triglycerides. These biomarkers were included because
they were obtained from blood samples during labora-
tory testing of NHANES participants. Fasting glucose,
ApoB, LDL-C, and triglyceride serum levels were only
measured in a subsample consisting of one-third of all
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persons 12 years and older in each NHANES cycle. The
subsamples were nationally representative, and appropri-
ate sample weights were applied to account for oversam-
pling. Blood samples were drawn, stored, and analyzed
according to specific protocols [20-25].

Statistical analyses
Summary statistics were tabulated to describe the gen-
eral population characteristics, biomarkers, and health
outcomes. Appropriate stratum values, sampling units,
and survey weights were applied so that nationwide in-
ference can be drawn [26]. Likewise, sample weights
were applied in all regression models.
Multivariate logistic regression was used to estimate odds

ratios (ORs) and joint association ORs to measure the as-
sociation between multiple biomarkers and CVDs [27]. For
the purpose of this study, joint associations measure the
odds of prevalent CVD respective to the simultaneous con-
centrations of each measured biomarker. Whereas an
interaction would measure how an individual association
between a CVD outcome and a biomarker concentration
varies given the change in concentration of another bio-
marker, a joint association measures the aggregated impact
on odds of disease for the selected markers by controlling
for potential confounding and co-explanation of disease
between the co-related variables. Biomarkers used in the
final models were determined by examining significant
changes in CVD prevalence across deciles of biomarker
serum concentrations. Next, we removed highly correlated
biomarkers. Although joint associations are robust to cor-
related variables [28], we were also interested in the indi-
vidual associations of single biomarkers within the joint
biomarker model, which can be impacted by correlation.
We used log-transformation to account for highly skewed
biomarkers in the models.
After the final biomarkers were determined, adjusted sin-

gle biomarker regression models were calculated for each
cardiovascular health outcome to serve as a level of com-
parison for the joint effect models. Base joint effect models
for each CVD had one term for each log-transformed bio-
marker as an independent variable. By including multiple
biomarkers, we simultaneously controlled for potential
confounding and overlapping associations between bio-
markers. We then built unique models for each CVD by
removing nonsignificant biomarkers from the base model
using iterative backwards elimination [29]. R2 values are
often used to assess model fit and predictive power in lin-
ear regression but cannot be calculated directly for logistic
regression models. Statistical software calculated pseudo-
R2 values for logistic regression, but we decline to present
them because they are not a measure of explained variabil-
ity and could potentially mislead the reader [30,31]. In
these joint association models, the log-transformed bio-
marker terms serve simultaneously as independent
variables making up a portion of the overall joint associ-
ation and control variables when examining the individual
impact of a specific biomarker within the model. Because
the biomarkers serve as control variables, we compared
the reduced model single-biomarker OR estimates to the
full model single-marker estimates to assess meaningful
changes due to the removal of biomarker terms from the
models. In addition to base and reduced models for the
total study population, we stratified the base models by age
to examine potential differences.
Joint association ORs were calculated by taking the

exponentiated sum of the product of each log-transformed
biomarker regression coefficient and that respective log-
transformed biomarker’s interquartile range (IQR). Using
log-transformed IQR increments provided standardization
across biomarkers, making it easier to interpret the joint as-
sociation OR. Standard errors used for calculating the joint
association model confidence intervals (CIs) were deter-
mined using the covariance matrices for each individual
biomarker estimate, as described in Winquist et al. and in
Additional file 1 [27].
To control for potential confounders, we adjusted for

sex, age, race/ethnicity, BMI, smoking history, SBP, and
family income. We separated age into four groups: 20–
34, 35–44, 45–60, and 60+. Race/ethnicity was catego-
rized as: Mexican-American, white, black, and other.
BMI was classified, according to NIH guidelines, as:
underweight (<18.5 kg/m2), normal weight (18.5-25.0
kg/m2), overweight (25.0-30 kg/m2), and obese (>30 kg/
m2). We divided subjects’ smoking status into: non-
smokers, former smokers, those who smoke some days,
and every-day smokers. SBP measures were categorized ac-
cording to American Heart Association classifications: nor-
mal (<120 mmHg), prehypertension (120–139 mmHg),
Stage 1 hypertension (140–159 mmHg), and Stage 2 hyper-
tension (>159 mmHg). Family income was measured as a
ratio of income-to-poverty threshold and then divided into
survey-weighted quartiles.
All analyses were conducted using SAS v9.3 (SAS In-

stitute Inc., Cary, NC). SAS sampling and survey analysis
procedures were used to implement NHANES stratum
values, sampling units, and survey weights to account
for unequal selection probability and the intentional
oversampling of demographic groups as a part of the
NHANES complex, multistage cluster design [26]. Sur-
vey weights were recalculated for the 10-year period be-
fore they were applied.

Results
Study population
The study population consisted of n = 32,458 subjects
meeting the inclusion criteria. Sample size for the final
regression models ranged from n = 2,119 to n = 28,348,
depending on age-stratification and inclusion of certain
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biomarkers that were measured in a subsample of the
study population. There were more females n = 16,936
than males n = 15,522, while whites were the most
highly represented racial/ethnic group at just over 70%
(Table 1). All study population statistics reflect applica-
tion of survey weights.

Serum biomarker concentrations
There were significant sex-related differences in survey-
weighted means of each biomarker (Table 2). Geometric
means were calculated for biomarkers with skewed dis-
tributions, resulting in a measure of central tendency
that is less influenced by extreme outliers. Men had sig-
nificantly higher geometric mean glycohemoglobin, fast-
ing glucose, ApoB, and triglycerides levels than women,
Table 1 Study population characteristics, US adults aged
20 and older, NHANES 1999-2010

n (% within groupa)

Overall 32,458 (100.0)

Sex

Male 15,522 (48. 0)

Female 16,936 (52.0)

Age (years) �x ¼ 46:5ð Þ
20-34 8,576 (28.3)

35-44 5,483 (20.7)

45-60 7,649 (29.2)

60+ 10,750 (21.8)

Ethnicity

Mexican-American 6,552 (7.8)

White 15,993 (70.4)

Black 6,388 (11.2)

Other 3,525 (10.6)

BMIb

Underweight (0–18.5) 493 (1.9)

Normal (18.5-25) 8,656 (31.4)

Overweight (25–30) 10,491 (34.0)

Obese (30+) 10,349 (32.7)

Smoking status

Nonsmoker 17,008 (51.7)

Former smoker 8,350 (24.7)

Some days 1,229 (3.7)

Every day 5,824 (19.9)

Systolic blood pressure

Normal (<120 mmHg) 15,166 (52.5)

Prehypertension (120–139) 9,608 (32.1)

Stage 1 hypertension (140–159) 3,937 (10.8)
aSurvey-weighted.
bBMI is only available for a smaller subset of participants who completed the
mobile exam center exam.
as well as higher mean LDL-C. Meanwhile, women had
higher TC and HDL-C mean levels and CRP geometric
mean levels than men. There were significant differences
in all biomarkers among age, race/ethnicity, and BMI
quartile groups, while disparities across smoking status
and income-to-poverty quartile were present for most
biomarkers.

CVD prevalence
Survey-weighted prevalence of CVD ranged from 2.35%
(95% CI: 2.13, 2.56) for CHF to 3.45% (95% CI: 3.16, 3.75)
for MI (Table 3). The overall prevalence of CVD, measured
as subjects who experienced at least one measured out-
come, was 8.64% (95% CI: 8.10, 9.18). Depending on the
health outcome of interest, prevalence varied significantly
relative to sex, age, race/ethnicity, BMI, smoking status,
and income-to-poverty ratio quartile group.

Serum biomarker deciles and CVD prevalence
We calculated survey-weighted deciles of biomarker
concentrations to examine unadjusted associations be-
tween biomarkers and CVD outcomes. Participants
within the top deciles of CRP, glycohemoglobin, fasting
glucose, and triglycerides had significantly higher preva-
lence of each measured outcome than subjects in the
bottom decile (Table 4) and thus were considered for
our joint association models. Among the four remaining
biomarkers, there were significant negative associations
of decile-level TC, LDL-C, and HDL-C with CVD. With
the exception of a negative association with CHD, asso-
ciations with ApoB were not significant.

Joint association models
CRP, glycohemoglobin, and triglycerides were considered
for the final models. Although we found negative associa-
tions of TC and LDL-C with CVD, it is widely reported
that the opposite relationship exists, and therefore we did
not include any of the cholesterol variables in our final
models [32]. Additionally, we found that participants with
self-reported high cholesterol had a much higher preva-
lence of MI, further indicating that the negative associa-
tions observed are an artifact of the study design and not
indicative of the true associations (Additional file 1: Table
S1a and b and accompanying note). We eliminated fasting
glucose from consideration because it was highly correlated
with glycohemoglobin (r = 0.83, Additional file 1: Table S2).
Furthermore, the associations between glycohemoglobin
and CVD observed in the decile analysis were more robust
than those involving fasting glucose (Additional file 1: Table
S3). As mentioned previously, despite the robust nature of
joint association models, the individual measures of associ-
ation that comprise the joint estimate can still be impacted
by correlation. This resulted in a three-biomarker base



Table 2 Demographic-stratified survey-weighted laboratory biomarker means and 95% confidence intervals

CRPa(mg/dL)
Glycohemoglobina (%)

Fasting
Glucosea,b (mg/dL)

ApoBa,b

(mg/dL)
Total cholesterol
(mg/dL)

HDL-
(mg/ ) LDL-Cb (mg/dL)

Triglyceridesa,b

(mg/dL)

x� 95% CI x� 95% CI x� 95% CI x� 95% CI x� 95% CI x� 5% CI x� 95% CI x� 95% CI

Overall 0.185 0.179, 0.190 5.46 5.44, 5.48 100.4 99.8, 100.9 91.6 90.4, 92.9 200.0 199.2, 200.8 52.7 2.4, 53.1 118.2 117.3, 119.1 116.8 115.0, 118.5

Gender

Male 0.154 0.149, 0.159 5.49 5.47, 5.51 103.2 102.5, 103.9 93.5 92.3, 94.7 198.2 197.1, 199.2 47.1 6.8, 47.5 119.4 118.2, 120.6 125.4 122.7, 128.2

Female 0.219 0.211, 0.227 5.44 5.42, 5.46 97.8 97.1, 98.4 89.9 88.4, 91.4 201.7 200.7, 202.7 58.0 7.4, 58.5 117.0 115.8, 118.2 109.2 107.2, 111.3

Age (years)

20-34 0.144 0.138, 0.150 5.16 5.14, 5.18 93.1 92.6, 93.7 84.5 83.1, 85.9 185.7 184.6, 186.8 51.4 0.9, 51.8 109.7 108.1, 111.2 101.4 98.6, 104.2

35-44 0.171 0.162, 0.180 5.34 5.31, 5.36 97.6 96.7, 98.6 91.9 89.6, 94.3 201.7 200.1, 203.3 51.7 1.1, 52.3 119.0 117.0, 120.9 115.2 111.0, 119.7

45-60 0.202 0.193, 0.211 5.61 5.58, 5.63 103.7 102.8, 104.7 97.8 95.9, 99.8 209.8 208.2, 211.4 53.3 2.8, 53.9 126.0 124.3, 127.7 125.3 122.5, 128.1

60+ 0.242 0.234, 0.249 5.80 5.77, 5.83 108.6 107.7, 109.6 92.4 90.9, 93.9 203.3 202.1, 204.5 54.7 4.1, 55.3 117.9 116.5, 119.4 129.4 127.2, 131.6

Ethnicity

Mexican-American 0.207 0.194, 0.220 5.53 5.50, 5.57 102.9 101.5, 104.3 94.9 93.3, 96.5 197.6 196.3, 199.0 49.7 9.1, 50.2 117.3 115.5, 119.2 126.5 122.2, 131.0

White 0.180 0.174, 0.187 5.41 5.39, 5.44 100.0 99.3, 100.6 91.7 90.2, 93.2 201.2 200.2, 202.2 52.9 2.4, 53.4 118.8 117.7, 119.9 119.6 117.5, 121.7

Black 0.229 0.217, 0.242 5.65 5.62, 5.68 100.2 98.9, 101.5 88.9 87.3, 90.5 193.7 192.4, 194.9 55.8 5.3, 56.4 115.6 114.0, 117.2 91.3 88.5, 94.1

Other 0.160 0.147, 0.173 5.55 5.51, 5.60 101.4 99.8, 103.0 91.5 88.8, 94.3 200.0 197.7, 202.2 50.9 0.1, 51.8 117.1 114.3, 119.9 120.6 116.1, 125.4

BMI

Underweight (0–18.5) 0.066 0.057, 0.078 5.18 5.15, 5.22 91.4 90.1, 92.7 76.2 71.7, 80.9 181.3 177.4, 185.1 64.4 2.3, 66.4 99.4 94.6, 104.2 80.2 74.0, 86.8

Normal (18.5-25) 0.101 0.096, 0.105 5.27 5.25, 5.29 94.8 94.2, 95.3 84.4 83.1, 85.7 194.1 192.9, 195.3 59.5 8.9, 60.0 112.4 111.0, 113.8 93.5 91.6, 95.4

Overweight (25–30) 0.174 0.169, 0.180 5.43 5.41, 5.45 100.5 99.7, 101.2 95.3 93.9, 96.8 204.9 203.6, 206.2 51.5 1.1, 52.0 122.9 121.6, 124.3 124.5 121.8, 127.2

Obese (30+) 0.363 0.354, 0.373 5.69 5.66, 5.71 106.3 105.4, 107.2 95.7 93.9, 97.5 201.7 200.5, 202.9 47.0 6.6, 47.4 120.4 118.9, 121.8 138.2 134.8, 141.6

Smoking status

Nonsmoker 0.171 0.165, 0.178 5.44 5.42, 5.46 99.4 98.8, 100.0 90.5 89.1, 91.8 198.7 197.8, 199.6 53.7 3.3, 54.1 117.3 116.2, 118.4 110.0 107.7, 112.3

Former smoker 0.196 0.188, 0.205 5.55 5.52, 5.57 103.7 102.7, 104.8 93.1 91.5, 94.8 202.7 201.2, 204.2 53.1 2.5, 53.7 119.4 117.6, 121.2 125.3 121.9, 128.7

Some days 0.166 0.153, 0.180 5.37 5.31, 5.44 99.6 96.9, 102.5 90.9 86.7, 95.3 199.3 195.7, 202.8 52.8 1.5, 54.1 114.6 109.6, 119.6 115.5 109.6, 121.7

Every day 0.211 0.203, 0.205 5.44 5.42, 5.46 98.7 97.9, 99.6 93.1 90.9, 95.4 200.1 198.6, 201.5 49.7 9.1, 50.4 119.4 117.7, 121.2 125.1 121.9, 128.4

Income to poverty
quartilec

Quartile 1 0.212 0.203, 0.221 5.53 5.51, 5.55 101.3 100.5, 102.2 91.0 89.5, 92.5 199.1 197.9, 200.3 51.3 0.7, 51.9 117.3 115.8, 118.9 120.0 117.2, 122.8

Quartile 2 0.195 0.186, 0.205 5.50 5.47, 5.53 101.7 100.6, 102.8 92.5 90.8, 94.2 199.1 197.8, 200.4 52.3 1.8, 52.8 118.0 116.5, 119.6 118.6 115.7, 121.7

Quartile 3 0.179 0.171, 0.187 5.42 5.40, 5.45 99.0 98.2, 99.9 90.7 88.7, 92.6 199.9 198.5, 201.2 52.6 2.1, 53.1 117.9 116.2. 119.6 114.0 110.7, 117.5

Quartile 4 0.158 0.150, 0.166 5.39 5.37, 5.42 99.5 98.7, 100.3 92.3 90.4, 94.3 201.7 200.2, 203.3 54.7 4.0, 55.4 119.3 117.3, 121.3 114.8 111.6, 118.0
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Table 2 Demographic-stratified survey-weighted laboratory biomarker means and 95% confidence intervals (Continued

Systolic blood pressure

Normal (<120 mmHg) 0.162 0.157, 0.167 5.35 5.33, 5.37 97.0 96.3, 97.6 88.9 87.6, 90.3 195.5 194.5, 196.2 53.4 3.0, 53.8 115.5 114.3, 116.7 107.8 105.7, 109.8

Prehypertension (120–139) 0.199 0.191, 0.207 5.53 5.50, 5.55 103.1 102.3, 104.0 93.9 92.3, 95.5 202.7 201.5, 204.0 51.0 0.6, 51.5 120.5 118.9, 122.0 125.9 122.6, 129.3

Stage 1 hypertension (140–159) 0.237 0.224, 0.252 5.68 5.64, 5.71 106.9 105.5, 108.4 99.5 93.9, 99.5 209.0 207.0, 210.9 53.4 2.6, 54.2 123.3 120.8, 125.7 131.8 127.6, 136.2

Stage 2 hypertension (>159) 0.274 0.257, 0.291 5.82 5.76, 5.87 108.6 106.0, 111.3 100 97.6, 104 212.1 209.6, 214.7 55.9 4.9, 56.9 122.9 119.7, 126.1 137.0 130.4, 143.8
aGeometric mean.
bPopulation subsample.
cIncome to poverty quartile is a categorical measure of the ratio of family income to poverty threshold (Q1: 0.00-1.33 Q2: 1.34-2.72 Q3: 2.73-4.65 Q4: 4.65-5.00).
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Table 3 Demographic-stratified cardiovascular outcome prevalence and 95% confidence intervals

Congestive heart failure Coronary heart disease Angina MI Stroke

n (case/total) %a 95% CIa n (case/total) %a 95% CIa n (case/total) %a 95% CIa n (case/total) %a 95% CIa n (case/total) %a 95% CIa

Overall 1,122/32,333 2.35 2.13, 2.56 1,414/32,279 3.40 3.13, 3.67 1,065/32,329 2.60 2.32, 2.87 1,511/32,389 3.45 3.16, 3.75 1,284/32,408 2.75 2.51, 2.66

Gender

Male 619/15,449 2.58 2.30, 2.86 941/15,426 3.40 4.20, 5.08 574/15,456 2.86 2.48, 3.23 993/15,489 4.55 4.09, 5.01 635/15,495 2.42 2.17, 2.66

Female 503/16,884 2.13 1.86, 2.41 473/16,853 2.25 1.96, 2.54 491/16,873 2.35 2.03, 2.68 518/16,900 2.44 2.15, 2.73 649/16,913 3.06 2.70, 3.41

Age

20-34 14/8,574 0.19 0.08, 0.31 14/8,573 0.15 0.06, 0.25 13/8,571 0.14 0.04, 0.24 26/8,573 0.34 0.17, 0.50 30/8,576 0.38 0.22, 0.54

35-44 37/5,476 0.55 0.34, 0.77 32/5,475 0.65 0.40, 0.90 42/5,474 0.76 0.49, 1.03 53/5,477 0.81 0.53, 1.09 49/5,478 0.92 0.59, 1.26

45-60 204/7,634 1.98 1.58, 2.38 245/7,622 3.00 2.50, 3.50 215/7,672 2.61 2.09, 3.13 284/7,640 3.32 2.78, 3.86 218/7,642 2.23 1.83, 2.63

60+ 867/10,649 7.38 6.76, 8.01 1,123/10,609 10.9 10.1, 11.7 795/10,657 7.56 6.78, 8.35 1,148/10,599 10.2 9.44, 11.0 987/10,712 8.30 7.53, 9.06

Ethnicity

Mexican-American 137/6,511 1.00 0.80, 1.21 180/6,511 1.53 1.25, 1.81 150/6,518 1.32 0.94, 1.69 175/6,535 1.40 1.13, 1.67 168/6,544 1.34 1.03, 1.66

White 648/15,941 2.47 2.20, 2.75 965/15,908 4.02 3.67, 4.36 694/15,945 2.99 2.64, 3.34 983/15,957 3.94 3.58, 4.30 722/15,960 2.88 2.57, 3.19

Black 250/6,369 3.00 2.54, 3.46 168/6,358 1.94 1.62, 2.76 132/6,363 1.61 1.30, 1.93 249/6,382 2.98 2.57, 3.39 303/6,385 3.64 3.21, 4.07

Other 87/3,512 1.80 1.30, 2.31 101/3,502 2.19 1.62, 2.76 89/3,503 1.94 1.39, 2.49 104/3,515 2.20 1.72, 2.68 91/3,519 2.00 1.43, 2.57

BMI

Underweight (0-18.5) 9/491 1.04 0.32, 1.76 14/490 1.84 0.66, 3.02 8/489 1.22 0.01, 2.43 19/492 2.34 0.99, 3.70 11/492 2.74 0.84, 4.64

Normal (18.5-25) 183/8,630 1.34 1.10, 1.58 271/8,620 2.16 1.86, 2.46 190/8,634 1.71 1.35, 2.08 288/8,644 2.28 1.94, 2.61 243/8,646 1.84 1.52, 2.16

Overweight (25-30) 313/10,450 2.18 1.88, 2.48 468/10,434 3.73 3.26, 4.21 321/10,448 2.48 2.10, 2.86 459/10,471 3.41 2.97, 3.86 364/10,474 2.58 2.24, 2.92

Obese (30+) 424/10,313 3.20 2.74, 3.65 500/10,297 4.26 3.78, 4.74 422/10,309 3.59 3.12, 4.07 552/10,327 4.47 3.99, 4.96 425/10,335 3.27 2.83, 3.71

Smoking status

Non-smoker 446/16,959 1.75 1.50, 2.00 529/16,937 2.30 2.03, 2.58 417/16,945 1.94 1.65, 2.23 504/16,973 2.14 1.88, 2.41 540/16,989 2.27 2.00, 2.54

Former smoker 484/8,295 4.03 3.53, 4.52 685/8,274 6.81 6.08, 7.53 482/8,303 4.51 3.99, 5.03 697/8,332 6.34 5.63, 7.05 486/8,332 3.72 3.29, 4.15

Some days 28/1,228 1.79 0.92, 2.66 29/1,225 1.81 0.88, 2.79 29/1,229 1.85 1.11, 2.59 39/1,229 2.16 1.28, 3.04 34/1,229 2.13 1.23, 3.02

Every day 161/5,805 1.92 1.53, 2.30 169/5,797 2.32 1.85, 2.79 135/5,806 2.07 1.53, 2.61 269/5,811 3.51 2.97, 4.06 221/5,811 2.91 2.40, 3.42

Income to poverty quartileb

Quartile 1 504/11,836 3.38 2.98, 3.78 536/11,816 3.59 3.15, 4.03 423/11,839 3.22 2.71, 3.73 665/11,864 4.44 3.91, 4.96 581/11,886 3.82 3.36, 4.27

Quartile 2 352/8,239 3.35 2.93, 3.76 401/8,220 4.07 3.62, 4.52 337/8,236 3.21 2.75, 3.66 441/8,258 4.31 3.73, 4.89 369/8,255 3.57 2.97, 4.17

Quartile 3 171/6,315 1.74 1.34, 2.14 236/6,303 2.86 2.39, 3.32 156/6,314 1.97 2.75, 3.66 217/6,319 2.60 2.19, 3.01 209/6,320 2.18 1.82, 2.55

Quartile 4 95/5,943 0.94 0.70, 1.19 241/5,940 3.10 2.60, 3.61 149/5,940 1.98 1.53, 2.43 188/5,948 2.44 2.01, 2.88 125/5,947 1.43 1.14, 1.73
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Table 3 Demographic-stratified cardiovascular outcome prevalence and 95% confidence intervals (Continued)

Systolic blood pressure

Normal (<120 mmHg) 523/16,832 2.09 1.85, 2.33 559/16,808 2.54 2.23, 2.85 438/16,819 2.13 1.87, 2.38 647/16,845 2.78 2.45, 3.10 521/16,853 2.13 1.87, 2.38

Prehypertens ion (120-139) 273/9,581 1.94 1.64, 2.24 412/9,554 3.30 2.84, 3.76 303/9,579 2.41 2.01, 2.81 426/9,592 3.35 2.87, 3.82 342/9,596 2.47 2.12, 2.82

Stage 1 hypertens ion (140-159) 199/3,905 3.83 3.10, 4.58 283/3,899 6.47 5.41, 7.53 206/3,909 4.55 3.67, 5.42 280/3,925 5.99 4.94, 7.05 221/3,929 4.57 3.85, 5.29

Stage 2 hypertens ion (>160) 127/2,015 5.03 3.99. 6.06 160/2,018 7.90 6.29, 9.51 118/2,022 5.42 4.10, 6.73 158/2,027 6.86 5.63, 8.08 200/2,030 8.56 6.84, 10.3
aSurvey-weighted.
bIncome to poverty quartile is a categorical measure of the ratio of family income to poverty threshold (Q1: 0.00-1.02 Q2: 1.03-2.12 Q3: 2.13-3.87 Q4: 3.88-5.00.
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Table 4 Summary statistics and survey-weighted CVD prevalence by survey-weighted deciles of laboratory biomarkers

Summary statistics Congestive heart failure Coronary heart disease Angina MI Stroke

Range x� a 95% CIa n (case/
total)

%a 95% CIa n (case/
total)

%a 95% CIa n (case/
total)

%a 95% CIa n (case/
total)

%a 95% CIa n (case/
total)

%a 95% CIa

C-reactive Protein (mg/dL)

All 0.01-29.6 0.417 0.405, 0.429 916/28,817 2.28 2.06, 2.51 1,229/28,778 3.43 3.15, 3.71 921/28,816 2.62 2.33, 2.91 1,296/28,869 3.44 3.15, 3.73 1,055/28,882 2.68 2.42, 2.94

D1 0.01-0.03 0.021 0.020, 0.021 21/2,373 0.73 0.30, 1.16 39/2,371 1.39 0.89, 1.90 32/2,377 1.34 0.77, 1.91 48/2,381 1.39 0.84, 1.95 38/2,381 0.93 0.50, 1.36

D10 0.97-29.6 2.044 1.979, 2.108 202/3,350 5.28 4.37, 6.18* 178/3,343 4.5 3.68, 5.33* 163/3,347 4.41 3.58, 5.24* 222/3,361 5.28 4.42, 6.14* 193/3,362 4.92 4.05, 5.80*

Glycohemoglobin (%)

All 2.00-18.8 5.51 5.49, 5.53 926/29,000 2.30 2.08, 2.53 1,242/28,958 3.44 3.15, 3.72 932/28,999 2.63 2.34, 2.92 1,313/29,051 3.45 3.16, 3.75 1,074/29,066 2.71 2.44, 2.98

D1 2.00-4.83 4.67 4.66, 4.68 21/2,225 0.89 0.42, 1.36 28/2,227 0.87 0.44, 1.29 16/2,227 0.75 0.34, 1.16 34/2,227 1.16 0.63, 1.68 38/2,227 1.44 0.80, 2.08

D10 6.07-18.8 7.34 7.30, 7.42 363/4,390 7.47 6.44, 8.49* 415/4,379 9.69 8.48, 10.91* 315/4,386 7.13 5.94, 8.32* 456/4,409 9.70 8.60, 10.80* 342/4,417 6.98 6.04, 7.93*

Fasting glucose (mg/dL)

All 38.0-587 102.7 102.0, 103.4 377/12,929 2.18 1.87, 2.48 528/12,915 3.38 3.01, 3.74 401/12.920 2.60 2.21, 2.98 578/12,957 3.48 3.08, 3.88 457/12,962 2.70 2.33, 3.07

D1 38.0-84.9 80.4 80.0, 80.7 23/1,272 1.30 0.70, 1.91 23/1,269 1.7 0.77, 2.62 17/1,271 1.24 0.49, 1.99 23/1,274 1.28 0.66, 1.90 27/1,276 1.79 0.94, 2.64

D10 119-587 161.5 157.8, 165.2 119/1,684 6.44 4.76, 8.11* 162/1,683 9.34 7.53, 11.15 132/1,681 7.75 6.00, 9.50* 174/1,691 9.92 7.91, 11.94* 114/1,692 5.80 4.53, 7.06*

Apolipoprotein (B) (mg/dL)

All 24.0-345.0 102.7 93.7, 96.3 211/6,883 2.32 1.88, 2.76 289/6,877 3.46 2.98, 3.93 195/6,877 2.30 1.83, 2.77 324/6,895 3.73 3.18, 4.28 260/6,899 2.83 2.30, 3.36

D1 24.0-63.9 80.4 54.4, 55.8 35/613 4.18 2.27, 6.10 49/611 6.45 4.66, 8.64 24/613 3.33 1.57, 5.09 41/614 6.05 4.02, 8.08 38/616 3.78 2.34, 5.22

D10 127-345 161.5 142.6, 145.6 23/731 2.55 1.15, 3.96 24/733 2.53 1.46, 3.60 11/730 1.14 0.51, 1.78 25/732 2.87 1.52, 4.22 27/733 3.07 1.34, 4.79

Total cholesterol (mg/dL)

All 72.0-727 200.0 199.2, 200.8 909/28,688 2.28 2.06, 2.50 1,224/28,648 3.43 3.15, 3.72 916/28,686 2.60 2.31, 2.89 1,292/28,740 3.44 3.15, 3.73 1,046/28,753 2.67 2.40, 2.93

D1 72.0-150 134.7 134.1, 135.2 206/2,867 4.99 3.96, 6.02 280/2,855 8.44 7.13, 9.76 169/2,868 4.96 3.84, 6.08 244/2,872 6.92 5.79, 8.05 164/2,875 3.87 3.10, 4.63

D10 253-727 280.8 279.2, 282.5 86/3,046 2.12 1.50, 2.73† 106/3,041 3.25 2.53, 3.97† 97/3,044 2.76 2.04, 3.49† 125/3,047 3.34 2.57, 4.12† 119/3,051 3.34 2.49, 4.18

HDL cholesterol (mg/dL)

All 7.0-188 52.7 52.4, 53.1 909/28,686 2.28 2.06, 2.50 1,223/28,646 3.43 3.14, 3.71 916/28,684 2.60 2.31, 2.89 1,291/28,738 3.44 3.15, 3.73 1,045/28,751 2.66 2.39, 2.93

D1 7.0-34.3 30.4 30.2, 30.6 152/2,654 3.95 3.19, 4.71 187/2,652 5.08 4.27, 5.88 122/2,648 3.39 2.65, 4.14 193/2,662 5.32 4.39, 6.24 135/2,659 3.66 2.94, 4.39

D10 73.7-188 85.5 85.0, 86.0 74/3,130 1.93 1.38, 2.47 71/3,126 1.77 1.31, 2.24† 72/3,134 2.10 1.51, 2.69 103/3,133 2.65 1.95, 3.35† 86/3,135 2.03 1.46, 2.61†

LDL cholesterol (mg/dL)

All 21.0-344 118.2 117.3, 119.1 364/12,474 2.18 1.86, 2.50 508/12,459 3.35 2.97, 3.73 383/12,465 2.53 2.15, 2.90 556/12,503 3.51 3.10, 3.91 437/12,506 2.62 2.24, 3.00

D1 21.0-75.0 63.4 62.7, 64.0 90/1,308 5.02 3.76, 6.28 132/1,304 9.25 7.11, 11.38 88/1,309 5.82 4.06, 7.58 119/1,312 7.94 6.26, 9.62 79/1,314 4.13 3.09, 5.16

D10 163-344 185.9 184.2, 187.7 33/1,281 1.72 1.05, 2.39† 37/1,281 1.99 1.29, 2.70† 26/1,276 1.39 0.72, 2.07† 47/1,282 2.46 1.64, 3.27† 46/1,282 3.00 1.78, 4.22
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Table 4 Summary statistics and survey-weighted CVD prevalence by survey-weighted deciles of laboratory biomarkers (Continued)

Triglycerides (mg/dL)

All 14.0-3,780 140.7 137.6, 143.9 374/12,788 2.19 1.88, 2.50 524/12,774 3.39 3.02, 3.76 395/12,779 2.57 2.19, 2.95 570/12,817 3.48 3.09, 3.88 449/12,821 2.65 2.28, 3.02

D1 14.0-58.3 47.9 47.3, 48.6 18/1,161 1.08 0.42, 1.74 25/1,161 1.61 0.92, 2.30 18/1,160 1.08 0.58, 1.58 29/1,161 1.90 1.19, 2.61 21/1,161 1.41 0.80, 2.02

D10 237-3,780 382.2 364.8, 399.7 52/1,397 3.26 2.18, 4.33* 76/1,399 5.10 3.63, 6.56* 62/1,397 4.60 3.19, 6.01* 86/1,399 5.74 4.26, 7.22* 57/1,398 3.51 2.49, 4.54*
aSurvey-weighted.
*D10 prevalence significantly higher than D1 prevalence at α = 0.05.
†D10 prevalence significantly lower than D1 prevalence at α = 0.05.
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model for each outcome, from which backwards elimin-
ation yielded outcome-specific reduced models.
Single-biomarker models of CRP, triglycerides, and

glycohemoglobin were strongly associated with each
CVD, though the associations between triglycerides and
stroke or MI were not significant (Table 5). The base
models’ joint association estimates combining all three
biomarkers (Table 6) were stronger than any estimate
from the single-biomarker models. Joint associations
from the base models ranged from 25.1% increased odds
for CHD (OR = 1.25; 95% CI: 0.92, 1.71) to 152.5% for
CHF (OR = 2.53; 95% CI: 1.86, 3.44). These estimates
are smaller than the exponentiated sum of the three es-
timates from the single-biomarker models, consistent
with the work of Winquist et al., because the single-
biomarker models do not control for covariate con-
founding [27]. Controlling for other co-predictors in
the joint association models resulted in lower individual
OR estimates than in the single-biomarker models.
While all but two individual ORs were significant in the
single-biomarker models, seven biomarker ORs were
not significant in the joint association models. The lar-
gest decrements in individual estimates occurred for
CRP, with ORs decreasing an average of 16.4% from the
Table 5 Adjusteda log-transformed single-marker logistic reg

Cases/n β x IQR

CHF

Triglycerides 352/12,561 0.2614

CRP 859/28,214 0.6057

Glycohemoglobin 869/28,390 0.1606

Angina

Triglycerides 378/12,550 0.2520

CRP 888/28,211 0.2427

Glycohemoglobin 889/28,387 0.1430

MI

Triglycerides 550/12,587 0.1389

CRP 1,239/28,261 0.2151

Glycohemoglobin 1,256/28,436 0.1446

Stroke

Triglycerides 420/12,590 0.1297

CRP 966/28,270 0.3765

Glycohemoglobin 985/28,447 0.1250

CHD

Triglycerides 508/12,548 0.1681

CRP 1,186/28,175 0.1953

Glycohemoglobin 1,198/28,348 0.1708
aModels adjusted for age, sex, race/ethnicity, BMI, smoking status, systolic blood pr
bOR estimates calculated for an IQR change in the respective biomarker, or an IQR in eac
[corresponding to a 2.22 fold increase in non-transformed Triglycerides], ln(CRP, mg/dL) =
ln(Glycohemoglobin, %) = 0.0935 [corresponding to a 1.10 fold increase in non-transform
single-biomarker models to the joint association
models, compared to 6.6% for triglycerides and 1.4% for
glycohemoglobin. While CRP was significantly associ-
ated with each of the CVD outcomes in the single-
biomarker models, it was only significantly associated
with CHF (OR = 1.86; 95% CI: 1.44, 2.43) and stroke
(OR = 1.36; 95% CI: 1.07, 1.72) after controlling for tri-
glycerides and glycohemoglobin in the joint association
models. Triglycerides were strongly associated with an-
gina in the joint association model, with an IQR in-
crease in log-triglycerides being associated with a 23.6%
increase in odds of angina (OR = 1.24 CI: 1.02, 1.50).
Glycohemoglobin was significantly associated with
every CVD outcome, with the odds of disease increasing
between 8.5% and 16.9% for every IQR increase in log-
glycohemoglobin, depending on the specific disease.
After removing nonsignificant biomarkers from each

model, we arrived at a unique reduced model for each out-
come. CHF and stroke joint association models included
CRP and glycohemoglobin; the angina joint association
model included triglycerides and glycohemoglobin; and MI
and CHD models included only glycohemoglobin (Table 7).
The ORs for the fully adjusted reduced joint association
models were all significant, indicating that a joint increase
ression model results

ORb (95% CI) p-value

1.299 1.057, 1.596 0.0128

1.833 1.538, 2.183 <0.0001

1.174 1.120, 1.232 <0.0001

1.287 1.067, 1.551 0.0083

1.275 1.077, 1.509 0.0048

1.154 1.099, 1.211 <0.0001

1.149 0.982, 1.345 0.0833

1.240 1.086, 1.417 0.0015

1.156 1.112, 1.201 <0.0001

1.139 0.952, 1.362 0.1565

1.457 1.238, 1.715 <0.0001

1.133 1.085, 1.184 <0.0001

1.183 1.021, 1.371 0.0251

1.216 1.037, 1.425 0.0161

1.186 1.142, 1.232 <0.0001

essure, and family income.
h biomarker for the joint effect estimates. IQRs for ln(Triglycerides, mg/dL) = 0.798
2.22 [corresponding to a 9.21 fold increase in non-transformed CRP],
ed glycohemoglobin].



Table 6 Adjusteda log-transformed joint association
logistic regression base model results

CVD outcome (cases/n) β x IQR ORb (95% CI) p-value

CHF (351/12,531)

Triglycerides 0.1654 1.180 0.961, 1.459 0.1141

CRP 0.6209 1.861 1.435, 2.432 <0.0001

Glycohemoglobin 0.1399 1.150 1.062, 1.246 0.0006

Joint association 0.9262 2.525 1.856, 3.437 <0.0001

Angina (377/12,520)

Triglycerides 0.2119 1.236 1.016, 1.504 0.0342

CRP -0.0082 0.992 0.742, 1.326 0.9560

Glycohemoglobin 0.0974 1.102 1.021, 1.190 0.0123

Joint association 0.3012 1.352 1.006, 1.816 0.0456

MI (549/12,557)

Triglycerides 0.0834 1.087 0.923, 1.280 0.3164

CRP 0.0478 1.049 0.822, 1.339 0.7005

Glycohemoglobin 0.1304 1.139 1.058, 1.227 0.0006

Joint association 0.2617 1.299 0.997, 1.693 0.0527

Stroke (418/12,560)

Triglycerides 0.0686 1.071 0.888, 1.292 0.4743

CRP 0.3042 1.356 1.072, 1.715 0.0112

Glycohemoglobin 0.0812 1.085 1.010, 1.164 0.0248

Joint association 0.4538 1.575 1.194, 2.077 0.0013

CHD (508/12,518)

Triglycerides 0.1082 1.114 0.965, 1.287 0.1419

CRP -0.0404 0.960 0.719, 1.284 0.7851

Glycohemoglobin 0.1560 1.169 1.092, 1.251 <0.0001

Joint association 0.2238 1.251 0.918, 1.705 0.1565
aModels adjusted for age, gender, race/ethnicity, BMI, smoking status, and
family income.
bOR estimates calculated for an IQR change in the respective biomarker, or an
IQR in each biomarker for the joint effect estimates. IQRs for ln(Triglycerides,
mg/dL) = 0.798 [corresponding to a 2.22 fold increase in non-transformed
Triglycerides], ln(CRP, mg/dL) = 2.22 [corresponding to a 9.21 fold increase in
non-transformed CRP], ln(Glycohemoglobin, %) = 0.0935 [corresponding to a
1.10 fold increase in non-transformed glycohemoglobin].

Table 7 Adjusteda log-transformed reduced joint
association logistic regression model results

CVD outcome (cases/n) β x IQR ORb (95% CI) p-value

CHF (858/28,163)

CRP 0.5647 1.759 1.473, 2.100 <0.0001

Glycohemoglobin 0.1412 1.152 1.096, 1.210 <0.0001

Joint association 0.7059 2.026 1.699, 2.415 <0.0001

Angina (378/12,523)

Triglycerides 0.2133 1.235 1.018, 1.499 0.0323

Glycohemoglobin 0.0972 1.102 1.022, 1.188 0.0114

Joint association 0.3086 1.362 1.126, 1.646 0.0015

MI (1,256/28,436)

Glycohemoglobin 0.1446 1.156 1.112, 1.201 <0.0001

Stroke (963/28,219)

CRP 0.3429 1.409 1.197, 1.659 <0.0001

Glycohemoglobin 0.1165 1.124 1.076, 1.173 <0.0001

Joint association 0.4594 1.583 1.338, 1.873 <0.0001

CHD (1,198/28,348)

Glycohemoglobin 0.1708 1.186 1.142, 1.232 <0.0001
aModels adjusted for age, sex, race/ethnicity, BMI, smoking status, systolic
blood pressure, and family income.
bOR estimates calculated for an IQR change in the respective biomarker, or an IQR
in each biomarker for the joint association estimates. IQRs for ln(Triglycerides, mg/
dL) = 0.798 [corresponding to a 2.22 fold increase in non-transformed Triglycerides],
ln(CRP, mg/dL) =2.22 [corresponding to a 9.21 fold increase in non-transformed
CRP], ln(Glycohemoglobin, %)=0.0935 [corresponding to a 1.10 fold increase in
non-transformed glycohemoglobin].
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in serum concentrations of the selected log-transformed
biomarkers was associated with an increase in the odds of
the corresponding cardiovascular outcome. Specifically,
joint IQR increases in log-CRP and log-glycohemoglobin
were associated with increased odds of CHF (OR = 2.03;
95% CI: 1.70, 2.42) and stroke (OR = 1.58; 95% CI: 1.34-
1.87), and a joint increase in log-triglycerides and log-
glycohemoglobin was associated with increased odds of
angina (OR = 1.36; 95% CI: 1.13, 1.65). Log-transformed
glycohemoglobin was the only biomarker that was signifi-
cant in every outcome-specific reduced model. Neither tri-
glycerides nor CRP were significant for MI or CHD, such
that the reduced models were single-biomarker glycohemo-
globin models. For those single-biomarker models, the OR
for an IQR increase in log-glycohemoglobin was 1.16 (95%
CI: 1.11, 1.20) for MI and 1.19 (95% CI: 1.14, 1.23) for CHD.
In addition to the base and reduced models, we used

age-stratified models to examine age-related differences in
biomarker-CVD associations. The lowest age groups (20–
34 and 35–44) had such a limited number of cardiovascular
events that most estimates were imprecise and unreliable
(Additional file 1: Tables S3a and S4e). The associations in
the older age groups (45–60 and 60+) did not deviate no-
ticeably from the nonstratified models.
Discussion
Our study explored associations between serum biomarkers
and CVD. Using a joint association approach to logistic re-
gression modeling, we saw a variety of associations of indi-
vidual and joint biomarkers with CVD. Consistent with
previous studies, we found that single-biomarker models of
CRP, triglycerides, and glycohemoglobin were significantly
associated with CVD [33-37]. However, we found that the
magnitude and significance of these associations decreased
after controlling for covariate confounding of the selected
biomarkers in the joint association models. This demon-
strates the likely presence of confounding among the bio-
markers; the potential exists for overestimation of the
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association between individual biomarkers and CVD when
failing to adjust for other co-varying biomarkers.
Biomarker associations with CVD were overestimated

when using single-biomarker models in comparison with
the full models. While single-marker CRP models showed
strong associations with angina, MI, and CHD, those re-
sults were no longer significant when controlling for tri-
glycerides and glycohemoglobin. While a number of
studies have shown a strong association between CRP and
CVD, there is evidence that the relationship may lessen in
relation to diabetes status [33]. A 2002 long-term follow-
up case control study by Sakkinen et al. found that the
predictive effect of CRP for MI was diminished in men
with diabetes [35]. Sakkinen et al. hypothesized that this
attenuation was likely due to an overlap in information be-
tween CRP concentrations and diabetes diagnosis, which
is supported by multiple studies that found significant cor-
relations among CRP, diabetes, and other features of MetS
[34,38,39]. These concerns have also been raised regarding
evidence supporting an association between triglycerides
and CHD. In a review of the literature, Sarwar et al. con-
cluded that associations between triglycerides and CHD
remain uncertain due to potential codependence of other
risk factors, such as other lipids [40]. Our findings sub-
stantiated this uncertainty, as a significant association be-
tween triglycerides and CHD in the single-biomarker
model was no longer significant when controlling for CRP
and glycohemoglobin. These examples demonstrate the
advantage of a multivariate approach. While these bio-
markers on their own can be important predictors of
CVD, by controlling for confounding between the bio-
markers, it may be possible to achieve a more accurate
evaluation of how biomarkers affect CVD risk on an indi-
vidual basis.
Glycohemoglobin was the only biomarker in our ana-

lyses that was significantly associated with MI or CHD,
and thus it was the only biomarker to be significantly as-
sociated with every CVD outcome in the reduced joint
association models. This is consistent with existing evi-
dence of an association between diabetes mellitus and
CVD. A review of epidemiologic studies shows both
cross-sectional associations and prospective temporal re-
lationships between diabetes and CVD incidence and
mortality [41]. Our study also found that of all variations
of CVD examined, glycohemoglobin had the strongest
association with CHD, which has previously been estab-
lished as the most common CVD outcome in adults
with diabetes [41,42].
Although the individual biomarkers are associated with

the CVD tested here, the reduced joint association model-
ing results suggest that unique combinations of bio-
markers with their related measures of association for
each model can be used to produce a unique risk estimate
for each CVD. For example, CRP and glycohemoglobin
were jointly associated with CHF and stroke, whereas tri-
glycerides and glycohemoglobin were jointly associated
with angina. Hence, where biomarkers have served as
general indicators of CVD risk, joint models can be uti-
lized to indicate risk for specific CVDs. Moreover, the
reduced joint association models indicated large in-
creases in CVD odds for joint increases in biomarker
concentrations that were larger than the OR estimate
from any single marker within that model but still lower
than if the overall association were estimated from
single-biomarker models. As in the individual bio-
marker estimates, controlling for co-predictor con-
founding prevents an overestimation of the joint
biomarker association [27].
Our conclusions are limited by several factors of our

study design. As with all cross-sectional studies, we are
unable to examine temporality between the biomarkers
and outcomes. Thus, incidence of disease cannot be
assessed here. Using a proxy measure creates the poten-
tial for subjects with recently increased or decreased bio-
marker concentrations to have measured levels that do
not match their historical exposure. This could be par-
ticularly relevant to patients who have reported CVD
but are currently taking medications or undergoing
other health interventions, including improved diet and
exercise, that may have lowered their biomarker levels.
This potential differential exposure misclassification may
have led to observed odds ratios that underestimate the
true magnitude of the associations [43]. Observed ORs
may also be underestimated due to survival bias,
whereby high biomarker levels may be predictive of
CVD mortality [44-47]. We speculate that the negative
associations seen between CVD prevalence and TC and
LDL-C levels are at least partially the result of survival
bias and/or the use cholesterol medication post-CVD
diagnosis. Another potential limitation of the lack of
temporality is the possibility that CRP levels were ele-
vated by post-event inflammation in participants who re-
ported CVD [48], resulting in CRP associations biased
away from the null.
The age-stratified analysis was hindered by a low num-

ber of CVD cases in the younger age groups, resulting in
imprecise and unreliable ORs, making it difficult to infer
potential relationships among age, biomarker levels, and
CVD. Sex-related differences were not explored for this
project, because division by sex would have further re-
duced the numbers of cases. Additionally, CVD status
was self-reported and thus was not verified. In general,
self-reporting of disease status and exposures, including
medication, diet, and exercise, add uncertainty to the
analysis. Although we do not expect the accuracy of self-
reporting to vary across biomarker levels, it is possible
that self-reporting accuracy varied on some factor simul-
taneously affecting biomarker levels, which may have
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introduced unknown bias into our measures of associ-
ation. However, the analysis presented here does not
presume to judge causality between self-reported disease
status and the combinations of biomarkers tested here.
This analysis reports associations for the purpose of esti-
mating risk.
Despite these limitations, our study had a number of

strengths. To our knowledge, this is the first large-scale
analysis using a joint association approach to assessing
the relationship between multiple biomarker concentra-
tions and CVD. NHANES provides a nationally repre-
sentative sample of the US, such that our results can be
generalized to the US adult civilian population. The large
sample size of NHANES lends confidence to the assess-
ment that helps to offset the uncertainties listed above.
Given the consistency of NHANES sample design and
data collection methodology, our results can provide a
basis for comparison when analyzing relationships be-
tween CVD and biomarkers among future cohorts.

Conclusions
Our work has built upon evidence from a multitude of
previous studies that have demonstrated associations be-
tween triglycerides, CRP, and glycohemglobin and varia-
tions of CVD. Specifically, this study highlights the need
to consider a joint effects approach to determining both
individual biomarker associations as well as the impact
of simultaneous increases in multiple biomarker concen-
trations. This approach may lead to more accurate indi-
vidual biomarker risk estimation through co-predictor
confounding control, a cumulative perspective of the im-
pact of related biomarkers on CVD, and the potential to
observe unique combinations of biomarkers that may be
predictive of variations of CVD. Future longitudinal
studies on the joint effect of multiple biomarkers on
CVD are needed to assess temporal relationships and
determine whether these models can be developed to
predict future onset of CVD. Additionally, expanding
joint association models to include interaction terms
could provide detail as to how the joint associations vary
given specific combinations of biomarkers (i.e., high
CRP vs. low glycohemoglobin).

Additional file

Additional file 1: Multiple biomarker models for improved risk
estimation of specific cardiovascular diseases related to metabolic
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