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Abstract

Background: Verbal autopsy is gaining increasing acceptance as a method for determining the underlying cause
of death when the cause of death given on death certificates is unavailable or unreliable, and there are now a
number of alternative approaches for mapping from verbal autopsy interviews to the underlying cause of death.
For public health applications, the population-level aggregates of the underlying causes are of primary interest,
expressed as the cause-specific mortality fractions (CSMFs) for a mutually exclusive, collectively exhaustive cause
list. Until now, CSMF Accuracy is the primary metric that has been used for measuring the quality of CSMF
estimation methods. Although it allows for relative comparisons of alternative methods, CSMF Accuracy provides
misleading numbers in absolute terms, because even random allocation of underlying causes yields relatively
high CSMF accuracy. Therefore, the objective of this study was to develop and test a measure of CSMF that
corrects this problem.

Methods: We developed a baseline approach of random allocation and measured its performance analytically and
through Monte Carlo simulation. We used this to develop a new metric of population-level estimation accuracy, the
Chance Corrected CSMF Accuracy (CCCSMF Accuracy), which has value near zero for random guessing, and negative
quality values for estimation methods that are worse than random at the population level.

Results: The CCCSMF Accuracy formula was found to be CCSMF Accuracy = (CSMF Accuracy - 0.632) / (1 - 0.632),
which indicates that, at the population-level, some existing and commonly used VA methods perform worse than
random guessing.

Conclusions: CCCSMF Accuracy should be used instead of CSMF Accuracy when assessing VA estimation methods
because it provides a more easily interpreted measure of the quality of population-level estimates.

Introduction
Understanding the leading cause of death (CoD) is vital
information for health decision-making [1]. The civil and
vital registration system (CVRS) constitutes the most
timely and accurate source of this information [2, 3], but
is unavailable in many regions of the world [4]. Verbal aut-
opsy interviews (VAIs) provide a promising alternative
(and potentially a complement) to the CVRS approach in
settings where CVRS information is unavailable or unreli-
able [5, 6]. In populations where medical certification of

causes of death is difficult to achieve, particularly those
poorly serviced by health facilities, the only viable option
to obtain information on causes of death is to use verbal
autopsy (VA) methods. VA includes three components:
(1) a VA instrument, used to elicit information from the
family or relatives about signs and symptoms experienced
by the deceased prior to death; (2) a diagnostic method to
derive the most probable cause of death from these
responses to the VA interview with families, which has
traditionally been accomplished by physician review, but
can also be assessed using a diagnostic algorithm that rec-
ognizes and associates response patterns with likely causes
of death; and (3) a target cause of death list that covers the
universe of causes of death which can be diagnosed from
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the VA interview, irrespective of the diagnostic approach
followed. Worldwide, less than 40 % of deaths are medic-
ally certified each year [7], and an additional 100,000 or so
are currently assigned a cause by some variant of verbal
autopsy, mostly in routine mortality surveillance systems
operating in China [8], India [9], or the INDEPTH net-
work [10]. There is now increasing momentum worldwide
to apply cost-effective VA methods to facilitate the intro-
duction of VA into routine civil registration systems in
countries across Asia, Africa and Latin America [11].
It is technically challenging to predict the underlying

cause of death from VAIs. A recent paper compared the
quality of six prediction methods on VAIs where the
underlying cause was known to meet rigorous clinical diag-
nostic criteria [12]. In that work, prediction quality was
assessed with five different metrics. Most of these measure
predictive quality on the individual level, to quantify how
well a method predicts the cause of each death. However,
for public health policy, it is of great importance to make
accurate predictions at the population level. Cause-specific
mortality fraction (CSMF) accuracy is a recently developed
metric for quantifying prediction quality at the population
level [13]. CSMF accuracy is an index of absolute deviation
of a set of estimated CSMFs from the true CSMF distribu-
tion, with value of one meaning perfect agreement, and
value of zero meaning as far apart as possible. This metric
is specific to validation studies which make use of a data-
base of VAIs with known underlying cause of death
(labeled data, in the parlance of machine learning). To pro-
tect against “over-fitting”, (where an algorithm, or even a
physician coder, estimates a CSMF distribution based on
what they have seen in the past instead of the data that
they are currently examining), CSMF accuracy requires
repeated calculation of this absolute deviation index for
multiple random samples of the underlying cause distribu-
tion of the test data.
CSMF accuracy, as originally formulated, is mislead-

ing, however. It is always a value that falls between zero
and one, but in practice it is rarely lower than 0.5 [12].
This is a limitation in interpretation, because even a very
low-quality approach scores well above zero. An extreme
example is that of a “prediction” method that resorts
simply to random guessing. Even this information-free
approach yields a CSMF accuracy substantially above
zero.
In this paper, we propose a modification of the CSMF

Accuracy metric, which we call chance-corrected cause-
specific mortality fraction (CCCSMF) accuracy, to adjust
the baseline of the metric so that allocating causes
uniformly at random (i.e. just “by chance”) achieves an
expected accuracy score of zero. We believe that this
will improve the interpretation of the absolute and com-
parative performance of different methods for estimating
cause-of-death patterns in populations.

The remainder of the paper is organized as follows: in
the methods section, we define the baseline algorithm
of Random Allocation and review the definitions of
chance-corrected concordance and CSMF accuracy. We
then introduce the Random-From-Train algorithm and
reiterate the importance of randomly resampling the
distribution of the test set when the population-level
predictions are of primary interest, and define our new
metric of CCCSMF accuracy. In the results section, we
use Monte Carlo simulation to find the exact formula of
CCCSMF accuracy, and to replicate the analytically
derived chance-corrected concordance metric. We then
apply this formula to produce a plot comparing three
existing methods of coding VAIs in terms of CCC and
CCCSMF accuracy, which we view as chance-correcting
previous results. We conclude the results section with a
demonstration of the importance of randomly resam-
pling the distribution of the test set. We follow this with
discussion and conclusions sections, including a subsec-
tion discussing the limitations of our work.

Methods
In Machine Learning (ML), mapping from VAIs to CoD
is an example of a classification problem, and ML
methods for classification, such as neural networks [14],
k-nearest neighbor [15], and random forests [16] have
been applied to VAIs previously. An ML concept that is
also quite relevant for VA applications is that of the
“baseline approach”, where a simple approach is used as
a comparison for the more sophisticated classification
methods. A baseline approach for mapping VAIs to CoD
is Random Allocation, which allocates the cause of death
uniformly at random from a mutually exclusive, collect-
ively exhaustive cause list (Table 1).
The machine learning construct of the confusion matrix

is a useful tool for understanding the performance of a
classifier on labeled validation data. The confusion matrix
M is a cross-tabulation of the number of true and pre-
dicted cases for each cause, which is to say a J × J matrix
where J is the length of the mutually exclusive, collectively
exhaustive cause list with the entry in row j and columns
j' given by

Mj;j′ ¼ of VAIs with true CoDj and predicted CoDj′

Table 2 shows the confusion matrix for physician-
coded VA and random allocation for the Population

Table 1 Random allocation algorithm

Training Data: mutually exclusive, collectively exhaustive cause list
(C1, C2, …, CJ), fixed a priori.

Input: VAI results X.

Output: Cause C, selected uniformly at random from (C1, C2, …, CJ).
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Health Metrics Research Consortium (PHMRC) validation
database for gold-standard-level-one adult deaths (this
database consisted of 2,702 VAIs gathered from six sites in
four countries, for deaths that met stringent clinical diag-
nostic criteria [17], and were subsequently coded by physi-
cians in a validation of the PCVA approach to VA [18]).

Chance-correcting concordance and CSMF accuracy
Recent work by Murray et al. developed robust metrics
for individual-level and population-level prediction qual-
ity: chance-corrected concordance and CSMF accuracy
[13]. Both can be written easily in terms of the confusion
matrix. Cause-specific concordance (Cj) is a measure of
predictive quality at the individual level, which quantifies
how likely a prediction is to be correct for a single VAI.
It is equal to the fraction of VAIs where the prediction
was correct, or in other words,

Cj ¼ Mj;jXJ

j′¼1
Mj;j′

:

Then cause-specific chance-corrected concordance
(CCCj) has the form

CCCj ¼ Cj−1=J
1 − 1=J

:

This scales and shifts the concordance so that the ex-
pected CCCj of random allocation is zero. Finally, an
overall metric of chance-corrected concordance is calcu-
lated as an unweighted mean of the cause-specific
values:

CCC ¼ 1
J

XJ

j¼1

CCCj:

Chance-corrected concordance is an adaptation of a
generalization of the sensitivity metric so familiar in epi-
demiology. It is generalized to account for the polyto-
mous nature of the prediction task. The chance
correction is important for making comparisons between

classifiers designed for different-length cause lists—shor-
tening the cause list makes the concordance of Random
Allocation go up, but leaves CCC unchanged at zero.
CSMF accuracy is a measure of predictive quality at

the population level, which quantifies how closely the
estimated CSMF values approximate the truth. It can be
defined in terms of the normalized row and column

sums of the confusion matrix, CSMFtruej ¼ PJ
j′¼1Mj;j′=n,

and CSMFpredj ¼ PJ
j′¼1Mj′;j=n, where n is the total num-

ber of VAIs,

n ¼
XJ

j¼1

XJ

j′¼1

Mj;j′ :

In this notation,

CSMF accuracy ¼ 1−

XJ

j¼1
CSMFtruej −CSMFpredj

���
���

2 1−minj CSMFtruej

� �� � ;

which has minimum value zero and maximum value
one. Unlike CCC, the CSMF accuracy of Random Allo-
cation is greater than zero, a deficiency that this paper
seeks to remedy.

The importance of randomly resampling the CSMF
distribution
These metrics have been widely used in measuring and
comparing the quality of a range of verbal autopsy ana-
lysis methods [16, 18–22] and their use is complicated
by the need to consider the average CCC and CSMF
over the range of possible CSMF distributions. This is
particularly relevant for CSMF accuracy, because a clas-
sifier that knows the CSMF distribution a priori could
perform very well at the population level for that CSMF
distribution without getting anything right at the indi-
vidual level. This might seem like a purely theoretical
concern, but a recent paper comparing four approaches
to computer certified verbal autopsy methods omitted

Table 2 Confusion matrices for physician-certified verbal autopsy and random-allocation verbal autopsy.

a) Physician Certified VA Confusion Matrix b) Random Allocation Confusion Matrix

Predicted Predicted

Stroke Diabetes Other Stroke Diabetes Other

True Stroke 123 18 125 True Stroke 87 84 95

Diabetes 5 86 55 Diabetes 32 61 53

Other 83 95 2112 Other 746 780 764

Panel A shows the confusion matrix for physician certified verbal autopsy (with a length-three cause list for clarity). The entry in each cell counts the number of
deaths truly due to the row cause that were predicted to be due to the column cause. For example, the value 83 in the “other” row, “stroke” column indicates that
83 deaths truly due to causes other than stroke or diabetes were (incorrectly) attributed to stroke by physicians. This table demonstrates that (for this dataset)
physicians are right more often than they are wrong when they predict stroke as the cause of death, but wrong more than they are right when they predict
diabetes. Panel B shows the confusion matrix for Random Allocation with the same dataset, where random chance predicts stroke and diabetes incorrectly for a
vast majority of the cases. True and PCVA data from Lozano et al. [18, 22], where physicians were presented with VAI data where the underlying cause was known to meet
stringent clinical diagnostic criteria, and their results compared to the truth
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CSMF distribution resampling, and which led to report-
ing counter-intuitive and misleading results [23]. To
demonstrate this in an extreme example, we developed
the population-level prediction scheme Random-From-
Train, where the prediction is random, but with a distri-
bution derived from the training dataset (hence the
name Random-From-Train). This is subtly different from
the distribution used in the Random Allocation pre-
dictor, and designed so that, in expectation, the CSMFs
predicted for the test set match the CSMFs observed in
the training set (Table 3).
The confusion matrix for Random-From-Train predic-

tion on the PHMRC validation database adult deaths is
shown in Table 4.

Chance-correcting previous results
Although previous work has used an un-chance-corrected
version of CSMF accuracy [12, 13, 16, 18, 19, 21, 22], it
would be generally useful to have a metric of population-
level accuracy where a score of zero indicates predictive
accuracy equal to Random Allocation. We therefore set
out to correct CSMF accuracy for chance analogously to
chance-corrected concordance, and to develop a formula
for Chance Corrected CSMF (CCCSMF) accuracy where
the quality of random allocation is 0.0, while perfect pre-
diction scores 1.0. To do this, we performed a Monte Carlo
calculation of the CSMF accuracy of Random Allocation,
by simulating a dataset with known CSMF distribution,
assigning “predicted” causes of death uniformly at random,
and measuring the CSMF accuracy of the predictions.
The distribution of the simulated dataset is an import-

ant and subtle detail of this calculation. We sampled the
true CSMF distribution from an uninformative Dirichlet
distribution (a probability distribution over CSMFs
which gives equal probability to all possible CSMF distri-
butions) [24]. We generated 10,000 replicates of the
Monte Carlo simulation, and calculated the mean the
CSMF accuracy across all replicates.
We then used the calculated values to chance-correct

the CSMF accuracy, according to the formula

CCCSMF ¼ ðCSMF−mean of random allocationÞ=
ð1−mean of random allocationÞ

We also used this simulation framework to perform a
Monte Carlo calculation of the concordance for random
allocation, which provides a cross-check for the

analytical derivation of CCC derived in Murray et al.
[13]. We repeated the simulations for cause lists ranging
from 3 to 50 causes.
To demonstrate the utility of this view, we updated

the comparative performance plot from Murray et al.
[12] for all commonly used methods, to use CCCSMF
accuracy as the metric of population-level accuracy. This
plot compared a range of VA prediction methods in a
range of settings according to CCC and CSMF accuracy
using a database of VAIs with known underlying cause
of death, according to gold-standard clinical diagnostic
criteria. As in the previous work, we have presented re-
sults for three age groups separately: Adult, Child, and
Neonatal deaths (N = 7,846, 2,064, and 2,625 respect-
ively). For each age group, in addition to analyzing with
all available information, we also excluded all answers to
questions that require the deceased to have contact with
the health system, such as “Was [name] ever told by a
health professional that he or she ever suffered from one
of the following?” Following the terminology we devel-
oped in our previous work, we call these scenarios with
and without healthcare experience (HCE).
This simulation setting also provided us an opportun-

ity to demonstrate the importance of randomly resam-
pling the cause-fraction of the test set from an
uninformative Dirichlet distribution (a technical point
that perhaps has not been sufficiently appreciated since
its introduction in Murray et al. [13]). To do so, we
compared the CCCSMF accuracy of Random Allocation
with that of Random-From-Train, where training data
was either uniformly distributed among causes (as we
strongly recommend) or distributed according to the
same distribution as the test data (as has sometimes
been the case in other work [23]).
We conducted all analysis with Python 2.7 (Additional

file 1: Supplementary Text 2).

Results
We found that the CSMF Accuracy of Random Allocation
decreased slightly and nonlinearly as a function of J across
the random considered (Fig. 1), and we proved analytically

Table 3 Random-From-Train Algorithm

Training Data: VAI results (X1, X2, …, XN) and corresponding CoDs
(C1, C2, …, CN)

Input: VAI result X

Output: C selected uniformly at random from (C1, C2, …, CN)

Table 4 Confusion matrix for Random-From-Train verbal autopsy.

a) Random-From-Train Confusion Matrix

Predicted

Stroke Diabetes Other

True Stroke 28 14 224

Diabetes 11 13 122

Other 223 106 1961

The confusion matrix for Random-From-Train (with a length-three cause-list for
clarity). As in Table 2, the entry in each cell counts the number of deaths truly
due to the row cause that were predicted to be due to the column cause. This
table demonstrates that while Random-From-Train is inaccurate at the
individual level, at the population level the prediction distribution can
closely match the truth
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that it tends towards an asymptotic value of 1 − e− 1 ≈
0.632 as J and N tend to ∞ (Additional file 2: Supplemen-
tary Text 1). For simplicity, we use this value to produce
the same formula for CCCSMF for all values of the CoD
list J (J=6, 21, and 34 are the lengths of the PHMRC cause
lists for neonatal, child, and adult deaths [17]):

CCCSMF ¼ ðCSMF−0:632Þ=ð1−0:632Þ

We used a Monte Carlo estimation procedure to cal-
culate the concordance of random allocation. The results
of the estimates agree precisely with the analytical value
of 1/J used for correcting for change in Murray et al.
[13] (Fig. 2, R^2 = 1.0).
Using the chance-corrected metrics for the x- and y-axes,

we produced an updated version of the master graphic
comparing the individual- and population-level quality of
all commonly used VA analysis methods from Murray et
al. [12] for neonates, children, and adults, considering and
not considering HCE (Fig. 3). For simplicity, we did not in-
clude uncertainty quantification, but the same adjustment
formula applied to transform the point estimate of CSMF
accuracy to CCCSMF accuracy can be used to transform
the upper and lower limits of the CSMF accuracy 95 % CI.
When using the Random-From-Train approach with

training data drawn from the same CSMF distribution as
test data, we measured an unreasonably high CCCSMF
Accuracy. Resampling the test set CSMF distribution
from an uninformative Dirichlet fixed this problem, and

resulted in CCCSMF accuracy for Random-From-Train
near zero in a way similar to CCCSMF accuracy of Ran-
dom Allocation (Table 5).

Discussion
The objective of this study was to develop and test a
measure of population-level predictive accuracy that is
informative in absolute, as well as relative, terms. We
believe that our new metric, Chance-corrected CSMF
Accuracy, makes things clearer by increasing the dy-
namic range of the population-level quality measure; al-
though a method that attains CSMF Accuracy of 0.632
may sound promising in absolute terms, it is not. As
shown above, this is the CSMF Accuracy of random
guessing. By subtracting 0.632 from the CSMF Accuracy,
random guessing and methods of similar quality are
given a score near zero. Rescaling the scores by dividing
through by 1 - 0.632 maintains the meaningful upper limit
of the quality score, where CSMF Accuracy of 1.0 indi-
cates perfect agreement between truth and prediction.
Unlike chance-corrected concordance, CCCSMF Ac-

curacy is not essential for comparing different length
cause lists. This is because the CSMF Accuracy of
Random Allocation is relatively insensitive to changes in
cause-list length (it dropped from 0.67 to 0.63 as J ranged
from 3 to 50 in Fig. 1). This can be compared with the
concordance of random allocation for different-length
cause lists, which ranged from 0.35 to 0.02 as J ranged
from 3 to 50 in Fig. 2.

Fig. 1 CSMF Accuracy of random allocation as a function of CoD list length. The mean CSMF accuracy of random allocation was calculated with
10,000 Monte Carlo replicates for cause-list length ranging from 3 to 50. The CSMF accuracy decreases monotonically as a function of J and ap-
pears to stay above 1 − 1/e ≈ 0.632, which we selected for our chance-correction parameter
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Resampling the CSMF distribution is essential when
evaluating CSMF and CCCSMF Accuracy; without it,
the trivial approach of Random-From-Train appears to
be nearly perfect at the population level. The issue
exemplified by Random-From-Train is not merely a the-
oretical/pathological concern. It has also shown up in

practice when evaluating the King-Lu method (a recently
developed method for mapping from VAIs directly to
CSMFs) [23]. It is likely also relevant in physician-
certified verbal autopsy (PCVA), because physicians may
rely on their prior beliefs about the composition of dis-
ease. Without resampling the test data, a validation

Fig. 3 Comparison of individual-level and population-level prediction quality for three commonly used methods: InterVA, Tariff, physician-certified
verbal autopsy (PCVA). Questions that rely on the deceased having health care experience (HCE) are necessary for population-level PCVA quality
to surpass random guessing. Data from Murray et al. [12]

Fig. 2 Comparison of concordance from Monte Carlo calculation and analytic calculation. The analogous chance-correction value for concord-
ance was calculated analytically in Murray et al. [13], and we confirmed its accuracy in our simulation environment. The absolute relative differ-
ence was always less than 1 %
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method will not be able to contradict a prior belief, even
if the belief is incorrect. In other words, just like all ma-
chine learning evaluations, it is essential to measure
CCCSMF accuracy out-of-sample, but, because CSMF
and CCCSMF Accuracy are population-level metrics,
measuring out-of-sample predictive validity is more
complicated than simply using a train/test split. The
PHMRC developed a methodology for this which we
recommend [13], and we hope that the demonstration of
its importance here will help in its uptake.

Limitations
Despite the importance of resampling the CSMF distri-
bution of the test set, it is not without limitations. The
uninformative Dirichlet assumes that anything can hap-
pen in test CSMF, because the out-of-sample CSMF is
selected uniformly at random. This is the simplest way
to address the risk of over-fitting, but it is perhaps too
tough a challenge, since there is some structure to CSMF
distributions that could be assumed.
The VAIs held out for out-of-sample validation were

from the same population, selected uniformly at random.
This approach may be overly optimistic about perform-
ance on VAIs from a completely different population. It
would be prudent to replicate validation studies period-
ically, to guard against differential item functioning and
changes symptomology.
The premise that every death has a single, underlying

cause has been challenged [25, 26], and as the epidemio-
logical transition continues and more individuals experi-
ence multiple comorbidities, this simplifying assumption
will become even more tenuous. However, we may still
hope to provide meaningful information at the popula-
tion level.

Conclusion
Chance-corrected CSMF accuracy is a simple transform-
ation of CSMF accuracy, but we believe that it provides

additional clarity on the absolute and relative perform-
ance of VA analysis methods at the population level.
The chance-correction of CSMF Accuracy does not

change the overall recommendations from Murray et al.:
namely that the Tariff 2.0 method is preferred for all
applications of automated VA methods [12].
As the epidemiological transition, technology, and

costs evolve, the accuracy and cost-effectiveness of alter-
native approaches to measuring causes of deaths should
continue to be assessed. Further innovation will improve
the quality of this critical information for decision-
making.
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