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Abstract 

Background:  The mortality pattern from birth to age five is known to vary by underlying cause of mortality, which 
has been documented in multiple instances. Many countries without high functioning vital registration systems 
could benefit from estimates of age- and cause-specific mortality to inform health programming, however, to date 
the causes of under-five death have only been described for broad age categories such as for neonates (0–27 days), 
infants (0–11 months), and children age 12–59 months.

Methods:  We adapt the log quadratic model to mortality patterns for children under five to all-cause child mortality 
and then to age- and cause-specific mortality (U5ACSM). We apply these methods to empirical sample registration 
system mortality data in China from 1996 to 2015. Based on these empirical data, we simulate probabilities of mortal-
ity in the case when the true relationships between age and mortality by cause are known.

Results:  We estimate U5ACSM within 0.1–0.7 deaths per 1000 livebirths in hold out strata for life tables constructed 
from the China sample registration system, representing considerable improvement compared to an error of 1.2 per 
1000 livebirths using a standard approach. This improved prediction error for U5ACSM is consistently demonstrated 
for all-cause as well as pneumonia- and injury-specific mortality. We also consistently identified cause-specific mortal-
ity patterns in simulated mortality scenarios.

Conclusion:  The log quadratic model is a significant improvement over the standard approach for deriving U5ACSM 
based on both simulation and empirical results.
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Background
In the past decade, estimates for the causes of death 
among young children have become available for all 
countries, including those where health system and vital 

registration functioning is low [1, 2]. These estimates are 
utilized by governments and international organizations 
for planning health programs, government and program 
accountability, and other tracking purposes [3]. As gov-
ernments and the international community increase their 
investment in developing and implementing age-targeted 
and disease-specific childhood interventions and policy 
[4–9], their effectiveness requires more detailed knowl-
edge of the age patterns of under-five mortality and 
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the primary contributors at each age. The majority of 
these deaths, however, occur in low and middle-income 
countries (LMICs) without high quality vital registra-
tion [1], creating massive uncertainty about age- and 
cause-specific child mortality. Many LMICs depend on 
verbal autopsies to examine cause-specific mortality 
for children under five, either directly through empiri-
cal estimates or indirectly through modeled estimates 
that employ data from verbal autopsy studies [1]. Ver-
bal autopsy studies, however, being among the recently 
deceased, do not characterize the population sizes by age 
and so cannot directly estimate cause-specific mortality 
for small age groups [10].

Developing effective interventions requires under-
standing of the age at death and from which causes chil-
dren are dying [1]. For example, the recently announced 
World Health Organization (WHO) Phase IV clinical trial 
of RTS, S/AS01 malaria vaccine [9] predicted that if the 
trial were successful and implemented globally, 18.0% of 
the 306,000 malaria deaths among children under-5 years 
of age, or more than 55,000 deaths could be averted [1, 8]. 
This prediction is based on estimates of malaria mortality 
at ages 6, 7.5, 9, and 27 months, i.e., the proposed malaria 
vaccine schedule [8]. However, such age-specific malaria 
death estimates are likely derived only from malaria high 
transmission settings where cohort studies of malaria 
interventions have been conducted. The external valid-
ity of such estimates to settings with low transmission or 
without malaria is questionable. Similarly, age and cause 
specific mortality is needed to accurately understand the 
benefits of maternal immunization and pneumococcal 
pneumonia vaccine [7]. As another example, the Lives 
Saved Tool, a widely used instrument for health planning 
in LMICs predicting under five mortality given the cov-
erage of interventions for child health [3], aims to incor-
porate cause specific mortality distributions for children 
under five in six age groups: 0–1, 1–5, 6–11, 12–23, and 
24–59 months. With high quality estimates of under-five 
age- and cause-specific mortality (U5ACSM), this tool 
could be refined in how it selects interventions for the 
most impact [11]. To precisely estimate the impacts of 
age-targeted disease-specific interventions, estimates of 
U5ACSM need systematic development.

Empirical evidence indicates that under-five causes of 
deaths are not uniform within broad age groups [12–16]. 
National under-five cause of death estimates for LMICs 
are available for two broad age categories: 0–27 days and 
1–59  months [17]. The global burden of disease study 
further disaggregated 1–59  months into 1–11  months 
and 12–59  months [18]. These methods have not com-
prehensively estimated U5ACSM. Instead, they often 
estimate cause distributions for broad age groups in dif-
ferent frameworks [17]. In addition, these estimates do 

not appear to capture sufficient variation in cause of 
death by age. For example, an estimated 72% of diarrhea 
and 81% of pneumonia deaths occur in the first 2 years of 
life [16], with pneumonia- and diarrhea-specific mortal-
ity fractions peaking at 0–11 months, then declining sub-
stantially at 12–23 months to stabilize at a very low level 
at 23–59 months. Malaria [12], measles [15], and injury 
are other examples of causes with uneven age distribu-
tions [13]. A complete mortality profile for a given age 
group would account for the complex interplay of cause 
contributors to child mortality, across the spectrum of 
ages under five in a systematic estimation framework.

Although there have not been comprehensive methods 
to estimate U5ACSM, there are methods for estimating 
the age structure among all ages from a given population. 
These methods have been employed for all-cause mortal-
ity for demographic purposes such as predicting demo-
graphic trends needed for estimating life expectancy, 
fertility rates, and disparity in life expectancy [19]. In par-
ticular, there are several methods predicting age-specific 
patterns of all-cause mortality among people of all ages 
with a matrix decomposition approach [20, 21] or given 
mortality in a selected age group [22–25]. These methods 
often use under-five mortality as an index for projecting 
adult mortality, in part because high quality estimates of 
under-five mortality are available for most areas and over 
time [26]. We aimed to adapt this general approach used 
for all-cause mortality to quantify U5ACSM.

The log quadratic model defined by Wilmoth and col-
leagues is publicly available and has been validated 
among high quality all-cause mortality data [24]. In addi-
tion, the log quadratic model utilizes estimates of under 
five mortality in a parsimonious and flexible approach. 
We adapt the log quadratic model here to determine 
whether U5ACSM can be estimated.

Methods
Adapting the log quadratic model
We adapted the log quadratic model between all-cause 
mortality for adult mortality and under-five all-cause 
mortality developed by Wilmoth et  al. [24]. Specifically, 
we employed the following log quadratic model,

where xq0 is the probability of dying from birth up to age 
x, x is a preselected age less than 5 years, and log(5q0 ) is 
the logarithm of the probability of dying between birth 
and age five. We chose x to predict xq0 in age groups 0–6, 
0–27  days, and 0–5, 0–11, 0–23, and 0–59  months to 
be consistent with the Lives Saved Tool [16], where the 
upper age limit represents completed days or months, so 

(1)
log(xq0) = ax + bx log(5q0)+ cx log(5q0)

2 + vxk ,
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that 0–59 months is equivalent to the standard under-five 
mortality rate. The variability of age-specific mortality at 
a given 5q0 is represented by vx , estimated from the sin-
gular value decomposition of the matrix of residuals from 
the quadratic equation above. The parameter k represents 
the deviation from the average pattern in a life table at a 
given 5q0 and can be tailored to fit xq0 for a specific age 
group x or to match the mortality over a given age range. 
The parameter vx is estimated for a reference set of prob-
abilities, while k is selected to best fit estimated mortality 
in a specific life table.

We used probabilities of dying from birth to age x for 
modeling rather than the probability of dying in each 
age interval ( xq0 rather than nqy , where n is the length 
of the age interval and x = y+ n ). Probabilities of dying 
from birth to age x have the advantage of being more 
stable. However, violations are possible where predicted 
xq0 may be less than yq0 for 0 < y < x , contrary to the 
interpretation of xq0 . In the event that these violations 
are observed, yq0 will be restricted by xq0 such that yq0 
< xq0 for 0 < y < x . In practice, this type of violation was 
only observed when xq0 and yq0 were very similar, when 
observed mortality between ages x and y was zero or 
close to zero. We also focused on the probabilities xq0 for 
specific age groups rather than the mortality rate from 
birth up to age x ( xm0 ) as employed by Wilmoth and col-
leagues. Even though these probabilities ( xq0 ) and rates 
( xm0 ) are closely related, we chose the probability xq0 as 
we observed a smaller coefficient of variation than xm0 
for under five mortality in our empirical data, which we 
expected to yield greater model stability. In addition, 
probabilities xq0 are generally more available than rates 
xm0 [26].

Parameters ax , bx , cx , and vx are estimated using Eq. (1), 
where 5q0 and xq0 for each age group of interest are avail-
able from source data, and k is estimated for each life 
table where 5q0 is known but xq0 for smaller age groups is 
not. We expanded this model to U5ACSM using

for age x and cause c. Here we focused on children of ages 
0–6, 0–27 days, and 0–5, 0–11, 0–23, and 0–59 months 
based on epidemiological evidence [12, 13, 15, 16]. For 
each of these age groups, we illustrate  the   proposed 
method  through pneumonia-specific and injury-specific 
mortality. We first fitted the adapted log quadratic model 
using empirical data, then used simulations to address 
potential measurement issues in the empirical data.

Empirical validation
We illustrated our adapted methods using mortal-
ity data from the Chinese Maternal and Child Health 

(2)
log(xq0,c) = ax,c + bx,c log(5q0,c)+ cx,c log(5q0,c)

2 + vx,ckc

Surveillance System (MCHSS), a sample registration sys-
tem for child mortality, from the period 1996 until 2015 
[27]. The MCHSS was designed to be representative in 
each of six strata of China, defined by geography (East, 
Mid, and West) and urbanicity (urban or rural). This sys-
tem was expanded in 2009 to cover additional population 
in the age of falling maternal mortality. The livebirths and 
under-five deaths monitored by this system over time are 
shown in Additional file 1. Over 80% of causes of death 
registered in this system were ascertained by medical 
certification, and the remainder by verbal autopsy [27]. 
From these data, we aimed to predict xq0 and xq0,c for 
pneumonia and injury.

We used cross validation to examine model perfor-
mance, estimating these parameters using five of six total 
strata over the period 1996–2015, and with the result-
ing parameter values estimated all-cause xq0 in the hold 
out strata using Eq.  (1). We examined the average abso-
lute difference between observed and predicted xq0 , 
|x̂q0 − xq0| as well as the average absolute relative differ-
ence in the sixth held out stratum,

We estimated xq0 first for the average age-specific mor-
tality profile at a given 5q0 (when parameter k is zero). We 
then estimated k for each life table to match exactly the 
all-cause neonatal mortality rate for each year in the hold 
out strata, for another estimate of xq0 . We compare these 
estimated xq0 to what is typically done when age specific 
mortality is not available, assuming a constant mortal-
ity rate within 0–27 days and 1–59 months [3]. We have 
labeled these estimates and their associated results as the 
standard approach.

For U5ACSM, we used observed 5q0,c and xq0,c to esti-
mate ax,c , bx,c , cx,c , and vx,c for deaths due to pneumonia 
and injury, repeating the above analyses. We used 5q0,c as 
in Eq. (2) to predict a typical xq0,c for age x, and we also 
used neonatal cause-specific mortality when estimating 
k for predicting all xq0,c in a specific life table. Pneumo-
nia and injury were selected because they are among the 
most common causes of mortality for children under-five 
in China across the study time period and with a known 
variation across age [12, 13, 18]. Following the GATHER 
guideline for international health statistics, data and soft-
ware to implement the proposed method are available at 
https://​github.​com/​jamie​perin/​U5ACSM [28].

Simulation validation
We also conducted a simulation study to examine the log 
quadratic model while minimizing the data quality con-
cern associated with the China mortality surveillance 

|xq0 − xq0|

xq0

https://github.com/jamieperin/U5ACSM
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system. We generated 5q0,c to resemble observed pneu-
monia mortality in China strata-years, such that 5q0,c 
was uniformly distributed and ranging from 2 deaths per 
1000 live births up to 40 deaths per 1000 live births. We 
then estimated parameters ax,c , bx,c , cx,c , and vx,c from life 
tables over six strata in 1996–2015 for pneumonia-spe-
cific mortality in China and the log quadratic relationship 
in Eq. (2). Age- and cause-specific probabilities were gen-
erated with varying degrees of error ex,c , such that

where ex,c is a normally distributed error term for each 
age group as observed in China, or with twice the error 
as in China. We compared parameter estimates to the 
known parameter values used in (3). We also used 
parameter estimates from simulated data to predict 
for an unobserved life table whose pneumonia-specific 
under five mortality is known in order to estimate the 
corresponding pneumonia mortality in fine age groups. 
This estimate of an unobserved life table is the primary 
interest of the log quadratic model and not the parameter 
estimates of ax,c , bx,c , cx,c , and vx,c . We selected three val-
ues of k to represent settings with low, middle, and high 
neonatal mortality due to pneumonia. We examined pre-
diction error in estimated xq0,c for these hypothetical life 
tables across 1000 simulations.

Results
Empirical validation results
There were over 65 thousand under-five deaths from the 
China MCHSS in 120 strata-years during the period 1996 
to 2015. These data were evaluated for a standardized set 
of fifteen causes of child mortality, including pneumonia 
and injury [27]. We used these 120 life tables to investi-
gate the relationship between 5q0 and xq0 for age groups 
0–6, 0–27 days, and 0–5, 0–11, 0–23, and 0–59 months. 
We observed strong linear relationships between all-
cause under-five mortality and age-specific mortality 
for these six age groups (not shown). Through the cross 
validation, we were able to predict the age-specific all-
cause mortality for holdout strata with an average rela-
tive error rate of 18% for the highest mortality age group 
(0–6  days), and as low as 3% for children 0–23  months 
(Table 1). When estimating shape parameter k, we were 
able to match xq0 exactly for 0–27 days when predicting 
for a holdout stratum, and error in specific age groups 
generally decreased as a result, from 18% to 16% for neo-
nates 0–6 days, compared to a 67% error using the stand-
ard method. In children 0–5-months-old, we were able to 

(3)

log(xq0,c) =ax,c + bx,c log(5q0,c)+ cx,c log(5q0,c)
2

+ vx,ck + ex,c,

estimate all-cause mortality within 3%, compared to 17% 
in the standard method.

We repeated these analyses for pneumonia-specific 
mortality in China using over 10 thousand deaths due 
to pneumonia. Age- and pneumonia-specific mortal-
ity are shown against 5q0,c in Fig. 1, where approximate 
log-linearity is observed, although with apparently 
more variability than all-cause mortality by age, as 
expected.

We were able to predict the age- and pneumonia-
specific mortality for holdout stratum with an average 
relative error of 78% for the highest mortality age group 
(0–6 days), and as low as 5% for children 12–23 months 
(Table 1). When estimating shape parameter k to match 
pneumonia-specific neonatal mortality, we were able to 
match pneumonia-specific neonatal mortality exactly 
for holdout stratum with error decreasing or gener-
ally similar for other ages when accounting for this 
shape, falling from 14 to 11% on average for children 
age 1–5-months-old, compared to a 36% error with 
the standard method. For children 6–11-months-old, 
we were able to estimate pneumonia-specific mortal-
ity within 8%, compared to 37% using the standard 
method.

We also predicted the age- and injury-specific mor-
tality for holdout stratum with an average relative error 
of 68% for the highest mortality age group (0–6 days), 
and as low as 16% per 1000 live births for children 
0–23 months (Table 1). When estimating shape param-
eter k, we matched injury-specific neonatal mortality 
exactly for holdout stratum. Cross validation error for 
other ages generally decreased when accounting for 
this shape, falling from 43 to 25% on average for those 
age 0–5  months, compared to 31% using the standard 
method. Observed and predicted cause-specific mor-
tality is shown in the mid-rural strata, a moderate mor-
tality area, both observed and predicted, in Figs. 2 and 
3 for pneumonia and injury, respectively. Specifically, 
U5ACSM was predicted for an average age and mortal-
ity profile ( k = 0 ), as well as for each specific life table 
while estimating shape parameter k using neonatal 
mortality. Predicted U5ACSM is shown for all strata-
years for pneumonia in Additional file  2 and injury in 
Additional file 3.

In addition to relative cross validation error, we also 
examined absolute error in estimated all-cause, pneu-
monia- and injury-specific mortality for the log quad-
ratic model compared to the standard method, in 
Table  2. For all-cause mortality, the standard method 
always had larger absolute than the log quadratic mod-
eled estimated, in most cases even compared to the log 
quadratic model assuming a shape (k) of 0, or before 
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incorporating neonatal mortality. For injury- and espe-
cially pneumonia-specific U5ACSM, cross validation 
error was always greater using the standard method 
compared to log quadratic method while estimating 
shape k, with the exception of mortality for the age 
group 0–6  days. In addition to estimating U5ACSM 
with the log quadratic model, we have also estimated 
U5ACSM with a similar model except assuming a log 
linear association between U5ACSM and 5q0 . These 
estimates have generally lower cross validation error 
than the standard approach, however, a few age groups 
have larger cross validation error compared to the log 
quadratic model (Additional file 4).

Simulation validation results
Across 1000 simulations, we observed consistent esti-
mation of the parameters ax,c , bx,c , cx,c , and vx,c , with 
absolute error close to zero and a minimal deviation, 
especially for ax,c , bx,c , and cx,c (not shown). However, the 

primary interest is in the quality of the predictions in “out 
of sample” life tables for the hypothetical setting. We pre-
dicted age-specific mortality for low, moderate, and high 
mortality, with 5q0,c of 1, 2, and 3 deaths per 1000 live-
births, respectively, taken from the 25th, 50th, and 75th 
percentiles of the distribution of 5q0,c for pneumonia in 
the China strata-years. As expected, the relative predic-
tion error in the low mortality setting was very low (not 
shown). Results are shown in Fig. 4 for the high mortal-
ity scenario, for error approximately equal to that in the 
China MCHSS (Fig.  4a), and for error approximately 
twice that seen in China (Fig.  4b). Although the gen-
eral shape of pneumonia-specific mortality is replicated, 
when the probabilities xq0,c are observed with an error 
similar to that in China, we see that predicted mortality 
in older children is closer to the truth than for younger 
children, as shown by the grey lines being more closely 
clustered around the blue line. When measurement 
error in observed xq0,c is roughly twice that of China, 

Table 1  Relative cross validation error for single hold-out strata in all-cause, pneumonia- and injury-specific mortality by age in China, 
1996–2015

Error shown as average percent difference between estimated and observed xq0 and xq0,c

‡Based on constant mortality daily/monthly rate across age within 0–27 days and 1–59 months

† k matched to all-cause neonatal mortality

*k matched to pneumonia-specific neonatal mortality

**k matched to injury-specific neonatal mortality

Age Relative error in xq0 per 1000 livebirths  xq0 (range)

Log quadratic with k = 0 
(%)

Log quadratic with estimated 
k (%)

Standard‡ (%)

All cause†

 0–6 days ( 6dq0) 18 16 67 1.3–29.7

 0–27 days ( 27dq0) 15 0 0 1.9–38.0

 0–5 months ( 5moq0) 7 3 17 2.6–55.3

 0–11 months ( 11moq0) 5 4 18 2.9–62.4

 0–23 months ( 23moq0) 3 3 16 3.2–68.4

 0–59 months ( 59moq0) 0 0 0 3.6–76.7

Pneumonia-specific*

 0–6 days ( 6dq0,c) 78 64 51 0.0–3.5

 0–27 days ( 27dq0,c) 47 0 0 0.0–6.9

 0–5 months ( 5moq0,c) 14 11 36 0.1–16.0

 0–11 months ( 11moq0,c) 9 8 37 0.1–20.0

 0–23 months ( 23moq0,c) 5 5 30 0.2–22.9

 0–59 months ( 59moq0,c) 0 0 0 0.2–24.0

Injury-specific**

 0–6 days ( 6dq0,c) 68 62 59 0.0–4.4

 0–27 days ( 27dq0,c) 68 0 0 0.0–4.7

 0–5 months ( 5moq0,c) 43 25 31 0.0–6.1

 0–11 months ( 11moq0,c) 32 23 23 0.0–6.5

 0–23 months ( 23moq0,c) 16 17 18 0.1–7.4

 0–59 months ( 59moq0,c) 0 0 0 0.3–11.9
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prediction accuracy decreases for all ages, including neo-
natal age groups, shown in Fig. 4 for a high mortality sce-
nario, having under five mortality due to pneumonia at 3 
per 1000 livebirths. Simulated results for low and mod-
erate mortality settings were similar or with lower cross 
validation error (not shown).

Discussion
We adapted a log quadratic model that has been used for 
predicting adult mortality to under-five age-specific all-
cause and cause-specific mortality which significantly 
outperformed the current standard. To our knowledge, 

this is the first attempt to estimate all-cause and cause-
specific mortality at this age resolution. We applied this 
adapted model to life tables available for six strata in 
China in 1996–2015 from mortality surveillance with 
medium quality. We also simulated life tables to make 
predictions in an environment where the “truth” and the 
measurement error are known to better understand esti-
mates’ behavior.

We were able to advance upon this goal to estimate 
age-specific patterns in all-cause and cause-specific mor-
tality with some success using the MCHSS data from 
China. We predicted pneumonia- and injury-specific 

Fig. 1  Pneumonia mortality in China by age group. Observed xq0,c and 5q0,c for age-specific mortality due to pneumonia in 120 strata years and in 
six age groups in China, 1996–2015
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mortality in six age groups for children under five with 
an error rate ranging from 0.1 to 0.7 deaths per 1000 live 
births, compared to error as high as 1.2 in the standard 
approach, which ignored the variation in cause-specific 
mortality across age. The standard approach was slightly 
better among the youngest neonates for both pneumo-
nia- and injury-specific mortality, however, in older chil-
dren the proposed method had as little as one tenth the 
error of the standard approach in pneumonia-specific 
mortality (0.10 vs. 1.08 per 1000 livebirths). Even in 
injury-specific mortality, which appears more consistent 

across age than pneumonia, the proposed method out-
performed the standard approach in three age groups by 
as much as 40% (0.14 vs. 0.23). In all-cause mortality, the 
proposed method outperformed the standard approach 
in absolute and relative error by a fair margin in every age 
group considered. We demonstrated similar prediction 
error as that in the empirical MCHSS data for the pro-
posed method in life tables simulated to resemble spe-
cific mortality scenarios across several different overall 
levels of pneumonia mortality.

Fig. 2  Pneumonia mortaity in China in six strata-years. Observed and predicted xq0,c for age-specific mortality due to pneumonia in the mid rural 
strata years in China, 2004–2009, estimating shape (k) to match pneumonia-specific neonatal mortality exactly
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We expected multifaceted challenges in achieving our 
aim. The age of children is often rounded in reporting, a 
phenomenon known as age heaping, which could impact 
consistency and uncertainty in any estimation frame-
work. We also utilized causes of death determined by 
verbal autopsy, which is generally subject to error [29]. 
A flexible approach could accommodate these challenges 
but would also need to maximize transparency and inter-
pretability for sharing with other researchers and those 
using U5ACSM estimates [28]. We did not expect to 
address all these challenges (age heaping, error in cause 

of death assignment, transparency) in a first attempt 
but instead to identify a method that could be adapted 
progressively.

Our study was limited by the quality of the MCHSS 
information from China, which is not equal to that 
of many well-functioning vital registration systems. 
Despite this limitation, we were able to identify consist-
ent patterns across age for pneumonia and injury-spe-
cific mortality. Higher quality vital registration mortality 
information, such as that in high income countries, could 
provide insight into heterogeneity in patterns of mortality 

Fig. 3  Injury mortality in China in six strata-years. Observed and predicted xq0,c for age-specific mortality due to injury in the mid rural strata years 
in China, 2004–2009, estimating shape (k) to match injury-specific neonatal mortality exactly
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across age with less data quality concerns. This analysis 
for mortality in medium quality mortality data, however, 
provides greater insight into issues of data quality that 
are expected in areas with incomplete vital registration, 
where the proposed methods would be most useful. In 
addition to these limitations, although we considered 
multiple causes of mortality, we did not constrain our 
analysis by all-cause mortality. Although post-hoc meth-
ods could be applied to multiple cause estimates for rec-
onciliation with all-cause estimates, such as a pro-rata 
scaling across causes, more research is needed to deter-
mine the best methods to make U5ACSM estimates con-
sistent with all-cause mortality.

We were also limited by our empirical estimates of 
under-five mortality, which were not based on the true 
under-five population size, but rather on the number 
of live births in each year due to the limitations of the 
MCHSS. As a consequence, mortality for older children 

may not be estimated as well as that for younger children. 
However, we do not expect this limitation to impact the 
proposed method more than the standard approach. We 
have conducted a sensitivity analysis for reconstructed 
birth cohorts in a limited set of years and repeated our 
cross validation analysis for all cause mortality (Addi-
tional file 5), with similar results. More research is needed 
in other settings to determine the behavior and applica-
bility of the proposed methods and their generalizability.

Our proposed method outperformed a standard 
approach for the MCHSS data and therefore are likely 
the most appropriate way to predict U5ACSM for these 
age groups when they are unknown. However, our anal-
ysis here did not include all specified causes of under-
five mortality, and so prediction error may be higher 
for unexamined causes, particularly for those with low 
mortality. We also have not examined prediction error 
for these methods in a diverse geography or time span 

Table 2  Average cross validation error for single hold-out strata in all-cause, pneumonia- and injury-specific mortality by age in China, 
1996–2015

Error shown as average absolute difference between estimated and observed xq0 and xq0,c

‡Based on constant mortality daily/monthly rate across age within 0–27 days and 1–59 months

† k matched to all-cause neonatal mortality

*k matched to pneumonia-specific neonatal mortality

**k matched to injury-specific neonatal mortality

Age Absolute error in xq0 per 1000 livebirths xq0 (range)

Log quadratic with k =0 Log quadratic with estimated 
k

Standard‡

All cause†

 0–6 days ( 6dq0) 1.92 1.72 6.47 1.3–29.7

 0–27 days ( 27dq0) 1.99 0.00 0.00 1.9–38.0

 0–5 months ( 5moq0) 1.03 0.68 2.68 2.6–55.3

 0–11 months ( 11moq0) 0.75 0.81 3.21 2.9–62.4

 0–23 months ( 23moq0) 0.43 0.60 3.00 3.2–68.4

 0–59 months ( 59moq0) 0.00 0.00 0.00 3.6–76.7

Pneumonia-specific*

 0–6 days ( 6dq0,c) 0.65 0.50 0.43 0.0–3.5

 0–27 days ( 27dq0,c) 0.71 0.00 0.00 0.0–6.9

 0–5 months ( 5moq0,c) 0.37 0.21 1.04 0.1–16.0

 0–11 months ( 11moq0,c) 0.26 0.20 1.21 0.1–20.0

 0–23 months ( 23moq0,c) 0.11 0.10 1.08 0.2–22.9

 0–59 months ( 59moq0,c) 0.00 0.00 0.00 0.2–24.0

Injury-specific**

 0–6 days ( 6dq0,c) 0.23 0.16 0.29 0.0–4.4

 0–27 days ( 27dq0,c) 0.34 0.00 0.00 0.0–4.7

 0–5 months ( 5moq0,c) 0.27 0.14 0.23 0.0–6.1

 0–11 months ( 11moq0,c) 0.19 0.16 0.17 0.0–6.5

 0–23 months ( 23moq0,c) 0.14 0.14 0.22 0.1–7.4

 0–59 months ( 59moq0,c) 0.00 0.00 0.00 0.3–11.9
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where there is more heterogeneity in health programs. 
We expect some variation in health programs such as dif-
ferences in the coverage of interventions to be reflected 
in 5q0,c , but future research is needed to determine the 
applicability of the proposed methods in more diverse 
settings.

It is also possible that there is a more favorable adapta-
tion of Wilmoth’s method that could be used to estimate 
U5ACSM. In addition to the adaptation proposed here, 
we examined the relationship between neonatal mortality 
and U5ACSM, as well as neonatal mortality in conjunc-
tion with 5q0 . We also examined all-cause 5q0 as a predic-
tor of cause-specific xq0,c , although we did not observe an 
improvement in our predicted U5ACSM with these dif-
ferent adaptations.

With the proposed  adaptation of Wilmoth’s method, 
it is possible to estimate U5ACSM for small age groups 
given an area’s cause-specific under-five mortality and 

with greater accuracy given that area’s cause-specific 
neonatal mortality. In areas where estimated cause-spe-
cific under five mortality is estimated with lower quality, 
the predictive ability of the proposed method may also be 
lower. To develop U5ASCM in these settings, an appro-
priate reference would need to be established, which may 
be available from birth histories in household surveys for 
children under five. Much detail regarding age and tim-
ing of mortality is recorded in household surveys, some 
of which include verbal autopsy for determining causes 
of mortality, possibly in sufficient detail to contribute 
to model building for U5ACSM [30]. More research is 
needed to determine how quality concerns such as age 
heaping would affect estimates, and whether such data 
can be used to estimate U5ACSM in LMICs.

We observed high rates of variability among the young-
est age groups (0–6d and 7–27d, Fig. 1), as well as high 
cross validation error both for the proposed approach 

Fig. 4  Simulated mortality based on pneumonia mortality in China. Cause-specific mortality predicted from simulated data, where the true age 
and mortality profile for a high mortality area are shown in blue, and the age and cause specific mortality generated by (3) and estimated by (2), 
including shape parameter k, in 1000 simulations shown in grey, for error in mortality by age comparable to that observed in China (a) and for 
approximately twice the error by age as observed in China (b)
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and using standard methods. This may be due in part to 
measurement errors in these younger age groups [30, 31]. 
These could include age heaping at 7d and 27d or misclas-
sification between stillbirth and neonatal death [17], as 
well as between the causes of death and the underreport-
ing of neonatal mortality. Improving the measurement 
of all-cause and cause-specific neonatal mortality would 
help improve the estimation of age-specific all-cause and 
cause-specific mortality. The methods proposed here also 
have potential in data quality assessment for empirical 
age- and cause-specific mortality at the population level 
for verbal autopsy studies, where data for individuals and 
site-specific validation are often not available.

Conclusions
Future methods of cause of death estimation for small 
age groups in areas with insufficient vital registration 
will likely benefit from ongoing research. Methods pre-
sented here have the potential to extend to other causes 
of child mortality with different patterns across age. 
Mortality surveillance in areas with historically low qual-
ity vital registration is increasing with studies such as 
the Child Health and Mortality Prevention Surveillance 
(CHAMPS) [32] and the Comprehensive Mortality Sur-
veillance for Action (COMSA) [33]. These studies incor-
porate new technology in the minimally invasive tissue 
sampling (MITS) that may increase the usefulness of ver-
bal autopsies, and so provide additional high quality mor-
tality information for methods such as ours. In particular, 
cause ascertainment could be improved thus reducing 
error in causes determined by verbal autopsy.

Most of the estimated 5.9 million deaths for children 
under five in 2015 occurred in areas where information 
is scarce [1]. Given that most child deaths are unre-
corded and their primary cause unknown, improve-
ments for vital registration systems in vulnerable areas 
is a top priority. However, the time and investment nec-
essary to record and ascertain the occurrence and cause 
of death in young children in these areas is substantial. 
While vital and health systems are working to register 
all under five deaths, we have an opportunity to lever-
age information already available from areas with high 
and medium quality registration. If age and cause pat-
terns were better understood, they have the potential to 
refine current tools and guide further reduction of child 
mortality in the era of the Sustainable Development 
Goals [34].
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