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Measuring unequal distribution of pandemic 
severity across census years, variants of concern 
and interventions
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Abstract 

Background  The COVID-19 pandemic stressed public health systems worldwide due to emergence of several highly 
transmissible variants of concern. Diverse and complex intervention policies deployed over the last years have shown 
varied effectiveness in controlling the pandemic. However, a systematic analysis and modelling of the combined 
effects of different viral lineages and complex intervention policies remains a challenge due to the lack of suitable 
measures of pandemic inequality and nonlinear effects.

Methods  Using large-scale agent-based modelling and a high-resolution computational simulation matching 
census-based demographics of Australia, we carried out a systematic comparative analysis of several COVID-19 
pandemic scenarios. The scenarios covered two most recent Australian census years (2016 and 2021), three variants 
of concern (ancestral, Delta and Omicron), and five representative intervention policies. We introduced pandemic 
Lorenz curves measuring an unequal distribution of the pandemic severity across local areas. We also quantified pan-
demic biomodality, distinguishing between urban and regional waves, and measured bifurcations in the effectiveness 
of interventions.

Results  We quantified nonlinear effects of population heterogeneity on the pandemic severity, highlighting that (i) 
the population growth amplifies pandemic peaks, (ii) the changes in population size amplify the peak incidence 
more than the changes in density, and (iii) the pandemic severity is distributed unequally across local areas. We 
also examined and delineated the effects of urbanisation on the incidence bimodality, distinguishing between urban 
and regional pandemic waves. Finally, we quantified and examined the impact of school closures, complemented 
by partial interventions, and identified the conditions when inclusion of school closures may decisively control 
the transmission.

Conclusions  Public health response to long-lasting pandemics must be frequently reviewed and adapted to demo-
graphic changes. To control recurrent waves, mass-vaccination rollouts need to be complemented by partial NPIs. 
Healthcare and vaccination resources need to be prioritised towards the localities and regions with high population 
growth and/or high density.
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Introduction
On 30 January 2020, the COVID-19 was recognised by 
the World Health Organisation (WHO) as a public health 
emergency of international concern: the WHO’s highest 
level of alert. On 11 March 2020, this was followed by 
the WHO declaring the outbreak a pandemic [1]. On 5 
May 2023, that is, 170 weeks since announcing the global 
health emergency, the WHO declared an end to the 
emergency, while continuing to refer to COVID-19 as a 
pandemic [2]. Over this time, the COVID-19 pandemic 
has had a profound impact, causing significant loss of 
life, reducing life expectancy [3, 4], seriously challeng-
ing healthcare systems [5], and adversely affecting socio-
economic activity worldwide [6]. By mid-June 2023, the 
pandemic had caused almost 800 million confirmed cases 
and 7 million confirmed deaths [7].

Over the course of pandemic, the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) which 
causes COVID-19 has mutated from its ancestral strain 
into a number of lineages and sub-lineages, varying in 
terms of infectivity and virulence. Several of these vari-
ants have been designated by the WHO as variants of 
concern, including the highly transmissible lineages 
B.1.617.2 (Delta) [8, 9] and B.1.1.529 (Omicron) [10, 11]. 
In Australia, these variants have triggered significant new 
waves of the pandemic [12–15].

In response, the public health systems worldwide 
employed a diverse range of intervention policies. The 
initial reactions involved non-pharmaceutical interven-
tions (NPIs) [16–18]. Typically, the NPI interventions 
combined various components, such as border closures 
and travel restrictions, case isolation, home quaran-
tine, school closures, and comprehensive “stay-at-home” 
orders comprising social distancing. Once safe and effec-
tive vaccines became available, this was followed by mass 
vaccination campaigns around the globe [19–21]. Vac-
cination rollouts differed with respect to (a) population 
coverage, ranging from partial to nearly complete; (b) 
rollout schemes, e.g., preemptive, progressive, or boost-
ing; as well as (c) different vaccine combinations, e.g., pri-
ority and general vaccines [21]. Each vaccine had efficacy 
variations with respect to (i) the susceptibility-reducing 
efficacy, (ii) the disease-preventing efficacy, and (iii) the 
transmission-limiting efficacy [19, 21]. In addition, vac-
cine effectiveness was nonlinearly diminishing over time 
[22]. The practice of dealing with multiple variables, 
objectives and constraints confounded many poten-
tial effects of various intervention policies: for example, 
school closures have been found to contribute differently 
under different circumstances [18, 23].

The combined effects of the evolving viral lineages and 
complex intervention policies have been difficult to sys-
tematically analyse, model and predict. For example, the 

persistence of the Omicron variant in Australia and the 
resulting recurrent waves were explained by a nuanced 
combination of the new transmissible sub-variants, the 
fluctuating adoption of NPIs, and the waning immunity 
from prior infections and vaccinations [15]. Importantly, 
such complex effects become sensitive to demographic 
variations in heterogeneous populations spanning differ-
ent age groups, household sizes, socio-economic profiles 
and jurisdictions. In general, to study a pandemic which 
has lasted more than three years, one needs to account 
for demographic changes which play an increasingly sali-
ent role. This influence often remains concealed due to 
the lack of high-resolution data and presence of jurisdic-
tional barriers, socio-political biases, and other factors 
[24, 25].

Here, we aim to examine some of these public health 
challenges and carry out a systematic simulation-based 
analysis of several COVID-19 pandemic scenarios, using 
Australia as a case study. We use two most recent cen-
sus years (2016 and 2021) as the alternative demographic 
settings within which each pandemic scenario is simu-
lated. Our comparative analysis contrasts three variants 
of concern which made an impact in Australia: the ances-
tral strain, the Delta and the Omicron lineages. For every 
scenario, five representative intervention policies are 
compared, ranging from (1) baseline (i.e., no interven-
tions), to (2) partial NPIs without vaccination, (3) partial 
preemptive vaccination without NPIs, (4) mixed inter-
vention with both partial NPIs and partial vaccination, 
and (5) partial lockdown including school closures.

In order to compare 30 possible scenarios ( 2× 3× 5 ), 
we apply an agent-based model (ABM) which simulates 
an artificial population generated using the high-reso-
lution Australian census data. The ABM has been pre-
viously calibrated and validated for several pandemic 
stages in Australia during the last four years [13, 15, 18, 
21, 26].

This study identifies and explains, in context of dif-
ferent variants and policies, several coupled nonlinear 
effects of the population growth and heterogeneity on 
the pandemic severity. In particular, we study how pan-
demic peaks may be amplified by distributed changes in 
the population size or the changes in population density.

Importantly, the study introduces a novel measure of 
pandemic inequality—pandemic Lorenz curves—and 
demonstrates that the pandemic severity may be dis-
tributed unequally across local areas. For example, while 
the pandemic inequality may reduce when the popula-
tion or the disease transmissibility grow, it may increase 
with more stringent interventions or in non-urban areas. 
We also measure pandemic biomodality, which char-
acterises formation of distinct urban and regional pan-
demic waves. In addition, we measure bifurcations in the 
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effectiveness of interventions, e.g., school closures, rela-
tive to variants of concern.

Methods
Agent‑based modelling COVID‑19 pandemic 
with Australian census
We simulated several scenarios of the COVID-19 pan-
demic in Australia using a well-established agent-based 
model previously validated for several pandemic waves 
and variants of concern [13, 15, 18, 21]. Our model has 
two fundamental components: (i) a simulated Australian 
population generated to represent key demographic fea-
tures of the Australian census data, and (ii) a stochastic 
agent-based model for disease transmission and control, 
detailed in Appendix B and Appendix C, respectively.

Our model comprises stochastically generated anony-
mous agents that represent the population of Australia: 
about 23.4 million using 2016 census, and 25.4 million 
using 2021 census. The population is partitioned into Sta-
tistical Areas (SAs) at different resolutions, e.g., SA2 level 
represents suburbs. The surrogate Australian population 
is constructed using a number of high-resolution data-
sets, including demographic data from the Australian 
census, international air traffic reports from the Bureau 
of Infrastructure and Transport Research Economics 
(BITRE), and educational registration records from the 
Australian Curriculum, and Assessment and Reporting 
Authority (ACARA). The generated population matches 
the population characteristics in terms of age, gender, 
household composition, student enrollment, workforce 
mobility, and international travel, as detailed in Appendix 
B.

Disease transmission follows a discrete-time simu-
lation, updating states of each agent over time. Fol-
lowing initial infections “seeded” around international 
airports, the transmission is probabilistically simulated 
by considering agent interactions across multiple social 
layers (mixing contexts), given different contact and 
transmission rates within both residential and work/
study contexts.

If an agent is exposed to the disease in one of their mix-
ing contexts, it goes through several health states follow-
ing the natural history disease model: Susceptible, Latent, 
Infectious (asymptomatic or symptomatic), and Removed 
(recovered or deceased). For an agent i, let us denote 
the set Gi consisting of all mixing contexts in which this 
agent interacts (e.g., workplace or school, grade and 
class in daytime cycles; and household, household clus-
ter, neighbourhood and community in nighttime cycles). 
At time cycle n, the probability for an susceptible agent i 
becoming infected across context g ∈ Gi is determined as 
follows:

where Ag\{i} represents the set of agents in the context 
g ∈ Gi excluding agent i, and pgj→i(n) denotes the instan-
taneous probability that an infectious agent j who shares 
the context g with susceptible agent i, transmits the 
infection to agent i. The transmission probability pgj→i is 
determined by epidemiological characteristics and vari-
ant-specific natural history of the disease (see Appendix 
C, and section "Variants of concern").

Then, the infection probability for agent i across all 
mixing contexts is calculated as follows:

Various intervention policies may reduce this probabil-
ity (see section " Intervention policies", Appendix "Non-
pharmaceutical interventions" and "Vaccination").

Simulated pandemic scenarios
Variants of concern
Our model has been calibrated to match key COVID-19 
characteristics across three variants of concern: ancestral 
(i.e., the strain initially detected in Wuhan, which was 
prevalent in Australia in 2020) [18], Delta (i.e., B.1.617.2 
variant, prevalent in Australia in 2021) [13], and Omi-
cron (i.e., B.1.1.529 variant, prevalent in Australia during 
2022) [15]. Over the last four years, these variants have 
not only evolved towards higher infectivity (i.e., higher 
basic reproductive number, R0 ), but have also exhibited 
distinct characteristics in the disease natural history. In 
this study, we performed a lateral comparison of these 
three variants, each following a different natural disease 
history (as shown in Fig. 1), combined with the interven-
tion policies described in section "Intervention policies", 
and using the data from two most recent census years 
(2016 and 2021). See Appendix C for a detailed parame-
terisation of the relevant epidemiological characteristics.

Intervention policies
NPIs considered in our model include case isolation 
(CI), home quarantine (HQ), social distancing (SD), 
and school closures (SC), each affecting different agents 
based on their health states (infected or susceptible), age 
groups (school-aged or not), and household composi-
tions (if there is an infected household member).

In simulating pandemic scenarios, we assumed a mod-
erate level of preemptive vaccination coverage of the 
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population (50%), accounting for the combined effects 
of a relatively high vaccination coverage in Australia [27] 
and low diminishing vaccine efficacy [28]. In line with 
prior studies [13, 15, 21], the vaccination scheme distrib-
utes two types of vaccines (priority and general), each 
with the vaccine efficacy defined in terms of reducing 
susceptibility, preventing symptoms of the disease, and 
limiting further transmission, as described in Appendix 
section "Vaccination".

We simulated five specific policies, each with a dif-
ferent combination of preemptive vaccination coverage 
and NPIs. These policies cover a wide range of scenar-
ios, starting from the “live-as-usual” intervention-free 

scenario to the lockdown-like scenario with strong 
restrictions limiting population mobility and social 
interactions, as shown in Fig. 2. Specifically, these poli-
cies can be summarised as follows:

•	 Policy 1—baseline: no NPIs and no preemptive vacci-
nation coverage, representing a scenario without any 
interventions.

•	 Policy 2—partial NPIs: some NPIs implemented 
(CI, HQ and SD at 70% compliance level), with no 
preemptive vaccination coverage. This represents a 
pandemic intervention scenario feasible without vac-
cines.

•	 Policy 3—partial vaccination: 50% preemptive vac-
cination of the population before a pandemic wave. 
This represents a scenario developing in a population 
with partially acquired immunity, but without any 
restrictions on social interactions during the pan-
demic.

•	 Policy 4—mixed intervention: some NPIs imple-
mented during a pandemic wave (CI, HQ and SD at 
70% compliance level) assuming that 50% of the pop-
ulation has been preemptively vaccinated prior to the 
pandemic wave. This represents a scenario with par-
tial acquired immunity in the population, followed by 
further restrictions on social interactions during the 
wave.

•	 Policy 5—partial lockdown: all NPIs implemented 
(CI, HQ, SD at 70% compliance level, and SC in addi-
tion) and 50% preemptive vaccination of the popula-
tion. This scenario represents a lockdown of the par-
tially immunised population using strong restrictions 
on social interactions.

Fig. 1  Model of the natural history of three COVID-19 variants: 
ancestral (blue), Delta (green), and Omicron (red). The illustrated 
profiles are sampled from 2 random agents. Each profile rises 
exponentially until reaching the infectivity peak, followed by a linear 
decrease until full recovery. Vertical lines mark the mean incubation 
period for the three considered variants (ancestral: blue, Delta: 
green, and Omicron: red), with the means following a log normal 
distribution. The mean incubation period and recovery period 
for each of the variants are reported in Appendix Table 6. The inset 
shows R0 of the three considered variants

Fig. 2  Five simulated intervention policy scenarios. PRE-VAC: preemptive vaccination prior to the pandemic. NPIs: non-pharmaceutical 
interventions. Policies are considered to be more stringent moving from left to right. The macro- and micro-parameters for NPI-related policies are 
summarised in Appendix Table 7. Parameters relating to the vaccination coverage and vaccine efficacy are summarised in Appendix Table 8
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Lorenz curves: measuring unequal distribution 
of pandemic severity
Different communities may experience impacts of 
interventions in significantly different ways, and these 
complex effects may not uniformly aggregate into the 
national pandemic dynamics (e.g., nationwide incidence 
and cumulative incidence). To examine distribution of 
the overall pandemic severity across different local areas, 
we introduce a novel technique based on Lorenz curves.

Lorenz curves, initially proposed to evaluate the degree 
of inequality in wealth distribution in society [29], have 
since been applied in many other domains, such as eco-
nomics [30, 31], underpinning the well-known Gini index 
which measures income/wealth distribution across a 
population [32], and biology [33, 34]. In this study, we 
proposed and constructed the pandemic Lorenz curves 
that capture inequality in the distribution of cumulative 
incidence at the SA2 level, and compared their shapes 
across the considered scenarios. The pandemic Lorenz 
curve dissects the nationwide cumulative incidence at 
the SA2 level, tracing it across all SA2 areas and assessing 
their relative contribution to the pandemic severity.

Figure  3 shows a simplified example to demonstrate 
possible shapes of pandemic Lorenz curve where the 
x-axis represents the cumulative fraction of SA2 residen-
tial population, ranked by their local attack rate (cumu-
lative incidence over the SA2 residential population), 
and the y-axis represents the fraction of cumulative inci-
dence at the ‘global’ national level, contributed by the 
corresponding fraction of SA2 residential population. 

Appendix D provides a detailed explanation of the Lor-
enz curves introduced in our study to measure the une-
qual distribution of pandemic severity.

Results
We present our results in three parts matching our key 
objectives, firstly examining the effects of population het-
erogeneity on pandemic severity across two census years 
(section  "Effects of population heterogeneity on pan-
demic severity"), then exploring pandemic spread, under 
the considered policies, in terms of urbanisation (sec-
tion  "Effects of urbanisation on pandemic spread"), and 
finally examining varying effects of a specific intervention 
policy—school closures—across the three considered 
variants of concern (section "Effects of school closures 
across variants of concern").

Effects of population heterogeneity on pandemic severity
We related the population heterogeneity with the pan-
demic severity observed in simulated scenarios across 
different intervention policies. Here, we measured the 
pandemic severity as the normalised incidence per mil-
lion (unless specified otherwise), computed as the ratio 
between the detected incidence cases to the total popu-
lation (in millions) for the considered census year. We 
assessed the population heterogeneity in terms of popu-
lation increase at the ‘global’ national level (section "Pop-
ulation growth amplifies pandemic peaks") and at the 
‘local’ SA2 level (sections  "Changes in population size 
amplify incidence peak more than changes in density" 
and "Pandemic severity is distributed unequally across 
local (SA2) areas"). Appendix A provides more informa-
tion about the population structure captured by the Aus-
tralian Bureau of Statistics (ABS).

Population growth amplifies pandemic peaks
Our results show that the population growth, i.e., the 
8.6% population increase between 2016 and 2021, pro-
duced a nonlinear response effect on the pandemic 
severity. If the pandemic severity was proportional to 
the population growth, the relative change in incidence 
between the two years could be expected to be zero (i.e., 
flat line in Fig. 4, bottom row). However, comparison of 
the simulated pandemic scenarios between 2016 and 
2021 produces a relative change in normalised incidence 
which non-trivially diverges from a flat profile (Fig.  4, 
bottom row), especially in scenarios with less stringent 
policies (e.g., policies 1, 2 and 3). It is clear that the diver-
gence is positive (i.e., a higher normalised incidence in 
2021, indicating an amplified nonlinear response to pop-
ulation growth) around the incidence peak, followed by 
a negative oscillation (i.e., a lower normalised incidence 
in 2021, suggesting a negative response to population 

Fig. 3  Pandemic Lorenz curves measuring inequality in distribution 
of the pandemic severity. The black line represents the line 
of equality where each SA2 contributes equally to the cumulative 
incidence. A curve closer to the line of equality (i.e., Lorenz Curve 
A, shown in red) indicates that the contributions of SA2 residential 
areas towards the aggregate cumulative incidence in response 
to a specific intervention policy A are more equally distributed 
than the contributions of these areas under policy B which are traced 
by the curve shaped further away from the line of equality (i.e., Lorenz 
Curve B, shown in blue)
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growth) after the peak. Figure  5 (top row) directly con-
trasts the pandemic profiles across two census years.

This nonlinear response pattern (an early amplification 
compensated by a late negative oscillation) is manifested 
for the baseline scenarios across all variants of concern, 
as well as the scenarios with less stringent policies for 
the Omicron variant, as shown in Fig.  4 (bottom row). 
In general, the amplification effect is more notable in 
the scenarios associated with more transmissible vari-
ants (Fig.  5). Specifically, for the Omicron variant, the 
incidence peak for Policy 1 (baseline) simulated for 2021 
census data (Fig. 5a, red profiles, solid and dashed lines), 
is 12.21% higher than its counterpart produced for 2016 
census. This nonlinearity arises due to the population 
distribution which non-uniformly affects the pandemic 
severity, amplifying the peak incidence (see the following 
subsection).

Changes in population size amplify incidence peak more 
than changes in density
To investigate possible causes that have contributed to 
the nonlinear response effects observed at national level, 
we considered the demographic changes which occurred 
between the two census years at SA2 level. The higher 
resolution offered at this level enabled us to trace how the 
local areas contribute to the disproportionate response 
in relative incidence between the two census years, 2016 
and 2021 (see Appendix A for the demographic statis-
tics and structure captured by census data). Specifically, 
we examined changes in the incidence peaks across 2147 
SA2 areas which were registered in both 2016 and 2021 
census years. In doing so, we used the baseline scenario 
implementing Policy 1 (no interventions) and correlated 
the peak incidence with specific demographic changes: 
the residential population size, the population density, 

Fig. 4  Impact of different intervention policies on pandemic severity for three considered variants simulated for two census years (top row: 2016; 
middle row: 2021; bottom row: relative change between years). Each column compares the impact of five intervention policies for one variant 
of concern: a ancestral; b Delta; c Omicron. See Fig. 2 for a detailed description of the considered intervention policies. Coloured shaded areas 
around solid lines show standard deviation. Each profile corresponds to one intervention policy and is computed as the average over 100 runs
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and the populations residing in households of different 
sizes, all measured at SA2 level.

We found that there is a strong positive correlation 
between the changes of peak incidence and the changes 
in the “usual residential” population. This finding is sup-
ported by high correlation coefficients across all vari-
ants ( 0.64 ≤ r ≤ 0.91 , as shown in Fig.  6). That is, an 
SA2 with a greater net population influx in the five-year 
period between 2016 and 2021 is highly likely to have a 
higher spike in the incidence peak. The impact of popula-
tion increase is further amplified for highly transmissible 
variants, resulting in a greater peak incidence difference 
shown by the steeper slope observed for the Omicron 
variant (Fig. 6, in red). In addition to the correlation with 
the usual residential population, we also found a weaker 
positive correlation ( 0.34 ≤ r ≤ 0.45 ) between the 
changes in peak incidence and the changes in population 
density, suggesting that SA2 areas which develop a higher 
population density may also have a higher incidence peak 
across all variants (Appendix Fig. 20).

We also found that the identified nonlinear response 
patterns cannot be attributed to differences in the aver-
age household size between census years. Although the 

SA2 areas with a higher average household size experi-
ence slightly worse pandemic effects across all considered 
variants (Appendix Fig. 21), there is no clear correlation 
between the difference in average household size and 
the peak incidence difference between 2016 and 2021, as 
summarised in Appendix Table  11 for Pearson correla-
tion coefficient, and shown in Fig. 22, across the consid-
ered variants.

To further investigate a potential impact of the house-
hold size on the nonlinear pandemic response, we parti-
tioned each SA2 population into two sub-populations: (i) 
residents of large households (i.e., with at least five house-
hold members), and (ii) residents of small households 
(i.e., with up to four household members). Irrespective 
of the household size, we observed a strong correlation 
between each sub-population and the peak incidence. 
This is shown in Fig. 23 for large households, and Fig. 25 
for small households. In particular, the sub-population 
residing in small households shows higher correlations 
for all considered variants across two census years, with 
high Pearson coefficients ranging between 0.95 and 0.99 
(Appendix Table 12).

Fig. 5  A comparison of pandemic severity for different policies across three considered variants (ancestral: blue; Delta: green; Omicron: red) 
and two census years (solid line: 2021; dashed line: 2016). The severity of each variant is measured by cases per million (top row). The change 
in incidence (bottom row) is calculated as the difference of incidence cases per million between two census years. Each column compares 
the impact of three variants for one intervention policy: a Policy 1; b Policy 4; and c Policy 5. See Fig. 2 for a detailed description of the considered 
intervention policies. Coloured shaded areas around solid lines (in bottom row) show standard deviation. Each profile (solid and dashed lines) 
corresponds to one intervention policy and is computed as the average over 100 runs
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However, when considering the correlation between 
the peak incidence difference between 2016 and 2021 and 
the difference in a partitioned sub-population—large-
household (Fig.  24) or small-household (Fig.  26)—we 
found that, for the Delta variant, the peak incidence dif-
ference is stronger correlated with difference in the large-
household sub-population ( r = 0.611 ) than difference in 
the small-household sub-population ( r = 0.522 ). Appen-
dix Table 12 summarises the comparative analysis.

Pandemic severity is distributed unequally across local (SA2) 
areas
Using Lorenz curves, we examined how the local (SA2) 
areas are impacted by different intervention policies 
across two demographic settings representing two cen-
sus years. Figure  7a and b shows that for the baseline 
scenario without any interventions (Policy 1), the pan-
demic effects are distributed equally across the areas, for 
all considered variants simulated for both census years 
(Appendix Fig. 27 provides a different layout of the same 
results). Comparing across two census years, we note 
that Lorenz curves produced for 2021 census are closer 
to the line of equality (i.e., the diagonal line) for the less 
transmissible variants (i.e., ancestral and Delta). This sug-
gests that for these two variants, the SA2 areas contribute 

to the aggregate attack rate at the national level more 
equally in 2021 scenarios than in their 2016 counterparts.

For the ancestral and Delta variants, more stringent 
intervention policies led to a more diverging contribution 
pattern (i.e., Lorenz curve shaped further away from the 
line of equality). For example, for the Delta variant, using 
2016 census data, we found that the increase in the frac-
tion of cumulative incidence from 20 to 80% under Policy 
1 (Fig.  7a top row, blue profile) is attained by an equal 
increase (i.e., 20 to 80%) in the population ranked by their 
local SA2 attack rate. However, the same increase in the 
incidence fraction (i.e., 20 to 80%) under Policy 4 (Fig. 7a 
top row, purple profile), was attained by a smaller set of 
SA2s comprising only approximately 40% to 85% of the 
population ranked by their local attack rate. This finding 
indicates that the pandemic severity is distributed more 
unequally under more stringent interventions (includ-
ing NPIs and vaccinations). Specifically, SA2 areas with 
a higher local attack rate (i.e., ranked higher on x-axis) 
account for a higher fraction of the cumulative incidence.

We also note that the unequal distribution of pandemic 
severity diminishes for the highly transmissible Omicron 
variant (shown in Fig.  7c) where all simulated interven-
tion policies failed to adequately slow down the transmis-
sion. This resulted in all SA2 areas contributing equally to 

Fig. 6  Positive correlation between the usual residential population difference and the peak incidence difference between 2016 and 2021 
at SA2 resolution for three considered variants: Ancestral (blue), Delta (green), and Omicron (red). Dashed lines represent linear fitting for each 
of the profiles (see Appendix Table 10 for statistical analysis). Data points corresponding to each SA2 are computed as the average over 100 runs. 
Total number of overlapping SA2 between 2016 and 2021 census years: 2147. Pearson correlation coefficients: rAncestral = 0.7717 , rDelta = 0.6447 , 
rOmicron = 0.9002
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the national-level cumulative incidence, with all Lorenz 
curves overlapping with the line of equality.

Effects of urbanisation on pandemic spread
The bimodal pandemic dynamics is characterised by the 
incidence peak (attributable to predominantly urban 
spread), followed by an inflexion point which shapes 
around a smaller secondary wave (attributable to mostly 
regional and rural areas) [35]. Typically, the first wave 
triggered by the international air traffic is rapidly shaped 

in urban populations concentrated near international air-
ports. In contrast, the pandemic progression into non-
urban regions (i.e., areas further away from international 
airports) is significantly slower. The confluence of these 
factors resulting in bimodal dynamics in Australia was 
detected and described in context of simulating the pan-
demic influenza using 2011 and 2016 census data [35]. 
Our simulations of the COVID-19 pandemic scenarios 
in this study also produced bimodal dynamics, especially 
for the ancestral and Delta variants using 2016 census 

Fig. 7  Pandemic Lorenz curves measuring distribution of pandemic effects across SA2 areas for considered variants, years and policies. Each 
column compares the impact of five intervention policies for one variant: a ancestral; b Delta; c Omicron. Top raw: 2016; bottom raw: 2021. Refer 
to Fig. 2 for a detailed description of the considered intervention policies. Each profile corresponds to one intervention policy and is computed 
as the average over 100 runs

Fig. 8  Comparison of pandemic waves in Greater Capital Cities (GCCs) and all other areas. Each column compares the baseline scenario (Policy 1) 
for 2016 and 2021 census data, for a variant of concern: a ancestral; b Delta; c Omicron. Each profile is computed as the average over 100 runs
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data (Fig. 8). However, the bimodality is less prominent in 
scenarios using 2021 census data, indicating a shift of the 
pandemic dynamics between urban and regional regions.

This observation is also supported by the pandemic 
dynamics examined at the SA2 level. Appendix Fig. 19 
shows that in comparison to the simulated results for 
2016 census, the time gap between the first and sec-
ond pandemic waves (defined in terms of the number 
of SA2 areas that peaked on a given day) for 2021 cen-
sus has become shorter at the SA2 level. These findings 
indicate that there are more intricate structural demo-
graphic changes in the population which occurred 
between 2016 and 2021, beyond a uniform population 
growth.

To explain this phenomenon, we assessed the pan-
demic progression during the baseline scenario (Policy 
1), by tracing pandemic waves in urban and non-urban 
SA2 areas (see Appendix Table  13 for the population 
statistics). Figure  8 compares the Greater Capital Cities 
(GCCs) against other areas (i.e., all remaining SA2s). We 
note that the two distinct pandemic progression pro-
files (urban and non-urban) are mostly separated by the 
initial conditions: the national incidence peak is largely 
attributed to urban SA2 areas while the inflexion point 
observable at a later stage of the pandemic is caused by a 
secondary wave emerging in non-urban SA2 areas.

For the baseline scenarios traced for two census years, 
our results showed that the bimodal dynamics is dimin-
ishing from 2016 to 2021 data. This can be explained 
by two factors: (i) a higher incidence peak occurring in 
both GCCs and other urban areas, and (ii) an accelerated 
pandemic progression into non-urban areas (or at least, 
into areas outside of GCCs). This effect was observed for 

scenarios across all variants of concern, with more trans-
missible variants showing a greater increase in the inci-
dence peak. This observation suggests a faster pandemic 
spread for 2021 scenarios, indicating that the urbanisa-
tion increased over the five-year period, captured by the 
census statistics (see Appendix Section A), reducing the 
bimodal dynamics.

We also observed that the bimodality is weakened for 
the Omicron variant. This is explained by a reduced dif-
ference in the peak incidence timing between GCCs and 
non-GCCs. In other words, the two waves, urban (pri-
mary) and non-urban (secondary), tend to merge into a 
primary significant wave with a single incidence peak. 
This can be attributed to the high transmissibility of the 
Omicron variant which suppresses the impact of popu-
lation heterogeneity. When the transmission was ade-
quately slowed down (due to interventions, for example, 
implementing Policy 4 and Policy 5), the two pandemic 
waves became more separable, leading to notable bimo-
dality (Appendix Fig. 28).

It is also worth noting that we do not consider re-
infections in these scenarios. In other words, a higher 
incidence peak occurring earlier in the simulation corre-
sponds to a reduction of the susceptible population, thus 
exhausting the susceptible population sooner and conse-
quently weakening bimodality.

Effects of school closures across variants of concern
Finally, we examined the effects of school closures across 
three variants of concern by comparing pandemic sce-
narios between Policy 4 (Mixed intervention) and Pol-
icy 5 (Partial lockdown). Our results suggested that the 
effectiveness of school closures varies significantly for 

Fig. 9  Effects of school closures combined with NPIs for three considered variants (log scale): a ancestral; b Delta; c Omicron. School closures 
effectively control the spread of Delta variant, producing a sharp difference in incidence. Such a bifurcation is not observed for the ancestral 
and Omicron variants. Each profile corresponds to one intervention policy and is computed as the average over 100 runs. Appendix Fig. 31 shows 
these plots on linear scale
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different variants. The effects of school closures were 
most prominent for the Delta variant with a two-order 
reduction in peak incidence (from over 1000 cases per 
million to under 10 cases per million), resulting in a 
sharp difference shown in Fig. 9b. Such a bifurcation was 
observed only in scenarios for the Delta variant and was 
not detected for variants with either lower R0 (i.e., ances-
tral variant, Fig. 9a) or a higher R0 (i.e., the Omicron vari-
ant, Fig. 9c).

For the ancestral variant, Policy 4 was sufficiently effec-
tive in containing the spread with new cases kept at a 
very low level. Although school closures could further 
reduce the peak incidence, the reduction (from around 2 
cases per million to around 0.6 cases per million) would 
be marginal. This could be observed for both 2016 and 
2021 census years (Fig. 9a).

For the Omicron variant, school closures delay the 
incidence peak by approximately 25 days with a sizable 
reduction from nearly 9000 cases per million to under 
6000 cases per million (Fig. 9c). This reduction, however, 
would still be insufficient to curb the spread. This find-
ing suggests that school closures could slow down the 
spread of the Omicron variant to some extent but would 
be inadequate for suppressing incidence, due to the 
extremely high R0 of the Omicron variant.

Overall, these observations suggest that when coupled 
with NPIs and partial vaccination, school closures can 
be a highly effective policy for pandemic suppression of 
variants comparable in transmissibility with the Delta 
variant. These benefits, however, may not eventuate for 
either significantly less or significantly more transmissi-
ble variants of concern.

Discussion
In this study, we carried out a systematic comparison of 
pandemic scenarios across census years, variants of con-
cern and intervention policies. The considered scenarios 
combined five different intervention policies with three 
dominant variants impacting Australia between 2020 and 
2023 (ancestral, Delta, and Omicron), using a surrogate 
population generated based on 2016 and 2021 Australia 
census data. Our simulation results revealed that the 
population growth and heterogeneity nonlinearly affect 
pandemic dynamics, amplifying the peak incidence for 
all variants of concern. These nonlinear response effects 
highlight a complex interplay between the demographic 
and pandemic characteristics, which may amplify pan-
demic impacts on continuously growing populations 
worldwide.

Firstly, we focused on the Australian population which 
grew by 8.6% between 2016 and 2021 (net gain of nearly 
2 million people). However, the population growth has 
been distributed non-uniformly across the country, 

affecting both local residential population size and pop-
ulation density. Such unevenly distributed demographic 
changes directly affect pandemic progression, and our 
results demonstrated that the estimation of pandemic 
severity cannot be accomplished by a simple scaling of 
the outcomes obtained for previous datasets, such as 
2016 census data. This strongly suggests that pandemic 
models and public health policies need to be frequently 
reviewed and adapted to changes in the population het-
erogeneity, especially when dealing with long-lasting 
pandemics similar to COVID-19.

We showed that the effectiveness of intervention poli-
cies differed across variants of concern (Figs.  4 and  5). 
Coupled with the observed amplification effects of demo-
graphic changes (Fig.  6), these findings call for specific 
interventions aimed to reduce the amplification effect, 
e.g., prioritising (1) the SA2 areas with a higher popula-
tion growth, and (2) the SA2 areas with a higher density 
increase. Growth in large-household sub-populations 
may deserve additional attention, especially when dealing 
with specific variants, e.g., variants comparable in their 
epidemiological profile with the Delta variant.

At the same time, some policy-related findings were 
independent of the considered variants or demograph-
ics. In particular, the scenarios considered in this study 
strongly suggested that a partial preemptive vaccination 
rollout with 50% coverage and limited vaccine efficacy 
(Policy 3) would likely only be effective in a combination 
with partial NPIs, comprising a mixed intervention (Pol-
icy 4). Applied on its own, Policy 3 was unable to control 
the pandemic spread across all considered scenarios, as 
shown in Fig. 4. Thus, the ongoing and future immunity 
boosting vaccination rollouts need to aim at high popula-
tion coverage comparable with original mass-vaccination 
campaigns, while still being complemented by partial 
NPIs. Similarly, partial NPIs (Policy 2) cannot provide a 
principled solution on its own. While managing to con-
trol pandemic scenarios for the less transmissible ances-
tral variant, partial NPIs did not succeed in preventing 
sizable incidence peaks in scenarios for the Delta and 
Omicron variants, but only delayed these peaks (Fig. 4). 
In general, such delays may be useful in rolling out 
booster vaccinations, reinforcing the point that a mixed 
intervention which combines partial NPIs and partial 
vaccination (such as Policy 4) may provide an adequate 
intervention.

Our study has also highlighted the “pandemic inequal-
ity”, with certain SA2 areas contributing to the nation-
wide cumulative incidence stronger than others. We 
found that the pandemic inequality reduces when the 
population or the disease transmissibility grows (Fig. 7). 
However, the opposite tendency—increasing pan-
demic inequality—was observed with more stringent 
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interventions (Appendix Fig.  27) or in non-urban areas 
(Appendix Fig.  30). While this inequality was lesser in 
scenarios for the highly transmissible Omicron variant, 
the findings still suggest that a resource prioritisation 
scheme is needed, with the interventions targeting the 
localities and regions which have been experiencing a 
high population growth and/or developing a high density.

Secondly, we quantified the pandemic effects of urbani-
sation, distinguishing between the first wave affecting 
Greater Capital Cities and a delayed second wave devel-
oping in regional and rural areas (Fig. 8). This bimodal-
ity indicates that, to be effective, the intervention efforts 
need to adapt during a pandemic progression, with the 
initial focus on metropolitan centres followed by a shift 
to non-urban areas, in anticipation of the corresponding 
peaks. Such geo-spatial redistribution of healthcare and 
vaccination resources needs to account for the transmis-
sibility of dominant variants of concern, as more trans-
missible variants accelerate the pandemic, bring the 
urban and non-urban waves closer in time, and shorten 
the time between their peaks.

Finally, we evaluated the role of school closures in sup-
pressing the pandemic transmission caused by different 
variants of concern in a partial lockdown-like scenario in 
combination with other interventions. Crucially, we dem-
onstrated that the effects of school closures are highly 
dependent on the dominant variant, with the more deci-
sive effect observed only for the Delta variant (given the 
range of other policy-defining parameters, i.e., the vac-
cination coverage of 50% and the NPI compliance with 
70% SD), as illustrated in Fig. 9. This also reinforces the 
suggestions that policy makers should not assume that 
interventions will have the same effect across different 
variants. In addition, this highlights the possibility that 
some interventions can compensate others in specific 
circumstances: for example, when the preemptive vacci-
nation or booster uptake is lower or slower than antici-
pated, school closures and stricter NPIs may be required 
to compensate for the lack of immunity.

In summary, the study highlighted the need for geo-
spatially and demographically tailored, proactive and 
agile interventions, in contrast to general-purpose, reac-
tive and rigid policies.

Limitations and future work
This study of pandemic severity did not include consid-
erations of (a) socio-economic factors, and (b) disease 
burden in terms of hospitalisations, ICU occupancy and 
mortality. As demonstrated in our previous studies [13, 
15, 26], these components can be included within an 
ABM study but substantially increase its scope.

Our simulations ran over a period of 196 days, without 
considering re-infections. Given the considered simula-
tion horizon, this limitation has a minor effect discussed 
in our study of recurrent waves [15].

Our focus on the three dominant variants of concern 
rather than on their numerous sub-lineages (which may 
co-circulate) allowed us to distill some of the salient pub-
lic health lessons. We believe these lessons would remain 
relevant across other sub-variants, including co-circulat-
ing ones.

We re-iterate that our aim was to compare key pan-
demic scenarios rather than replicate the 2021 incidence 
of COVID-19 in Australia. Thus, we intentionally did not 
use the air traffic data between 2020 to 2021 due to the 
severe disruption of international travel caused by the 
travel restrictions during the COVID-19 pandemic at the 
time.

Our ABM includes a substantial number of parameters, 
which have been calibrated to different variants or esti-
mated using available epidemiological evidence. As more 
data become available, the parameter ranges may change 
and some estimates and findings may be refined. At the 
same time, a comprehensive sensitivity analysis provides 
strong evidence that the model and its outcomes are 
robust to parameter changes.

Finally, we did not model the differences in vaccine 
efficacy across variants of concern (including ancestral, 
Delta, and Omicron variants). This should not impact 
the outcomes over the considered simulation horizon. 
Nevertheless, our model will be extended in near future, 
addressing these limitations (re-infections and multiple 
co-circulating variants with different immunity profiles).

Conclusion
In pursuing our objectives, we solved several methodo-
logical challenges, extending the range of applicability 
for agent-based pandemic modelling. Firstly, we incorpo-
rated the ABS census data for 2021, thus accounting for 
the most recent demographic information for Australia, 
in terms of the population structure, age distribution, 
household composition, and commuting flow patterns. 
This “upgrade” is important because previous similar 
studies used the data from the Australian census of 2016, 
scaling the modelling outcomes by approximately 10% 
to account for the larger population. Our results showed 
that the demographic changes over the five-year period 
contribute to the pandemic outcomes in more subtle 
nonlinear ways that often cannot be captured by a uni-
form scaling. To study these nuanced contributions, we 
employed Lorenz curves characterising an unequal dis-
tribution of pandemic effects.
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Secondly, we addressed a well-known inconsistency 
between low-resolution and aggregated high-resolution 
census data brought about in 2016 by the ABS anonymity 
policy compliance system [36, 37]. In order to reduce this 
mismatch, we reconstructed a surrogate high-resolution 
2021 commuter topology (Section "Surrogate domes-
tic commuting network" of Appendix). This allowed us 
to examine nuanced effects of the pandemic scenarios 
on urban and regional areas, and measure pandemic 
bimodality.

Overall, the extended ABM, coupled with the recon-
struction techniques, offered a versatile approach to 
model comparative scenarios with multiple variants 
of concern, simulated across different demographic 
settings (census years) and for distinct intervention 
policies. A combination of census-based ABM and pan-
demic Lorenz curves provided a unique high-resolution 
method to not only simulate different pandemic sce-
narios across varying demographics and variants, but 
also evaluate the unequally distributed effects of feasi-
ble intervention policies. This, in particular, allowed us 
to emphasise the divergent role of school closures as a 
complementary NPI–with respect to the disease trans-
missibility, exemplifying a bifurcation in the effective-
ness of school closures.

In summary, the presented results illustrate how 
comparative analysis measuring distribution of the 
pandemic severity across different dimensions can help 
in improving public health preparedness and response 
to future pandemics. In particular, the study highlights 
that rigorous pandemic modelling can provide insights 
into the impact of complex demographic factors on 
the spread of infectious diseases over medium- to 
long-term.

Appendix A: Population data
The population data used in our model is drawn from 
2016 and 2021 Australian Census data published by the 
Australian Bureau of Statistics (ABS). Australian Cen-
sus comprises a large number of hierarchical data fields 
categorised by geographical, demographic, and socio-
economic parameters [40]. In our model, we use the 
demographic fields in Australian census (extracted uti-
lising ABS TableBuilder [41]) to generate an artificial 
population as a “digital twin” of the Australian popula-
tion, aiming to capture its main characteristics with high 
fidelity. Here, we describe the demographic census data 
structures and examine salient features of the Australian 
population mobility and the international air traffic.

Fig. 10  Snapshot of the Australian population: locations and geographical areas. Capital city of each state is annotated with their usual residential 
population (P) and geographical area (A) in 2016 (in red) and in 2021 (in blue), respectively. The state names are abbreviated as follows: Western 
Australia (WA), Northern Territory (NT), South Australia (SA), Queensland (QLD), New South Wales (NSW), Victoria (VIC) and Tasmania (TAS). Note 
that changes in the size of geographical areas are due to boundary changes
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Census data structure
The 2021 census reports that the Australian popula-
tion reached 25.4 million, following an 8.6% increase 
(2,020,896 million people) since 2016 census counts. 
There are eight states and territories in Australia, each 
with a capital city. Figure 10 shows the geographical rep-
resentation of the states and their corresponding capi-
tal cities which comprise about two thirds of Australian 
population.

Each state is further divided into different levels of 
statistical areas (without gaps or overlaps) following 
a nested hierarchical framework of geographic levels 
[40]. Each succeeding level is a breakdown of the pre-
vious level into smaller areas defined as follows: States 
and Territories (ST/T), Statistical Area Level 4 (SA4), 
Statistical Area Level 3 (SA3), Statistical Area Level 2 
(SA2), Statistical Area Level 1 (SA1), and Mesh Blocks 
(MB). Table  1 summarises the number of statistical 
areas at each level and the corresponding usual residen-
tial population range. Note that 2021 census reported 
more statistical areas across all levels due to changes in 
the partitioning approach. Due to merging and split-
ting of areas, the new partitioning approach resulted in 
a net increase of 7.5% for the number of SA1 areas and 
7% increase for the number of SA2 areas.

In addition to the residential population, a wide 
range of other demographic features are also reported 
for each level. The following features are incorporated 
into the artificial population generation: age, gender, 
household composition, and commuting patterns. See 
Appendix section  B for more details regarding how 
these features are incorporated in our model.

In order to reduce the risk of individual- or household-
level identification, all data reported in the census are 
anonymised via several perturbation methods including, 
but not limited to, the removal of aggregated microdata 
falling under a set threshold. It is important to note that 
the ABS data perturbation policies may differ across 
datasets and may change between census years.

 Mobility: travel to work
The short-distance commuting patterns are reported 
via the travel-to-work (TTW) dataset, detailing the 
accumulated number of employed individuals commut-
ing between their place of usual residence (UR) and a 
place of work (POW). We use this dataset to construct 
a commuter mobility network (detailed in section "Sur-
rogate domestic commuting network"). Commuter 
counts are accumulated on several statistical levels:

•	 UR: reported at SA1, SA2, SA3, SA4 level
•	 POW: reported at DZN, SA2, SA3, SA4 level
•	 number of employed commuters (either full-time or 

part-time)

Another level (DZN, destination zone) is used to describe 
the POW population at a resolution comparable to SA1 
but following a different set of partition rules. Both SA1 
and DZN accumulate to attain exact partitions at SA2 
level.

The perturbation protocol that the ABS adopted for 
privacy protection removes some edges between UR and 
POW (that is, UR ↔ POW edges). This removal is done 
if the commuter counts are below a certain threshold. In 
our previous work [37], we showed that the edge removal 
causes large discrepancies in the edge counts between 
different statistical area levels. When generating the arti-
ficial population, we address this problem by minimising 
the discrepancies between different SA levels, improving 
consistency of the population representation across the 
levels (see section "Travel to work").

 Urban structure and international air traffic
Australia is a highly urbanised society with heterogene-
ously distributed population as annotated, see Fig.  10. 
The eight capital cities, despite their rather small geo-
graphical area size, account for more than two thirds of 
the Australian residential population, while the remain-
ing land (mostly regional areas) comprises only one third 
of the population.

The capital cities and their surrounding areas are 
defined by the ABS as the Greater Capital Cities (GCC) 
including the urban areas (city centres) and the areas in 
some proximity, to account for the residents who work, 
shop, and socialise within the city. We examine the urban 
structure, particularly GCCs, for two reasons.

Firstly, the population densities of GCCs are considera-
bly higher compared to other areas of Australia, allowing 
for a greater social interaction from both residents and 
working commuters. This increased likelihood of mixing 
aggravates the spread of infectious diseases [42–44]. In 

Table 1  The hierarchical levels in Australian census structure

The population for each level refers to the usual residential population, 
excluding visitors

2016 census 2021 census population range (approx.)

MB 358,122 368,286 N.A

SA1 57,523 61,845 200–800

SA2 2310 2473 3000–25,000

SA3 358 359 30,000–130,000

SA4 107 108 100,000–500,000
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addition, both residential and working population den-
sities continued to increase between 2016 and 2021 for 
all GCCs despite the brief disruption of migration and 
movement during the COVID-19 pandemic, as shown 
in Fig.  11. Furthermore, the urbanisation level in GCCs 
greatly varies across the country. Figures  11a and 12 
illustrate a stark contrast between the population-dense 
GCCs (Sydney, NSW GCC; and Melbourne, VIC GCC) 
and cities with noticeably lower population density, e.g., 
Hobart (TAS GCC). This large variability also suggests a 
high heterogeneity within the GCC population.

Secondly, the local and international air traffic is con-
centrated in GCCs, increasing the potential of disease 
introduction by long-range travel (i.e., international 
sources) [45], as well as its subsequent spread. Due to 
Australia’s geographic isolation, the international air-
ports located in GCCs take the vast majority of interna-
tional passenger inflow. We note that airports of several 
non-GCC cities, such as Newcastle (NTL) and Sunshine 
Coast (MCY), may also take a relatively small number of 
international incoming passengers, as shown in Fig.  13. 
The air traffic data is reported by the Australian Bureau 

Fig. 11  Comparison of residential population density and working population density in different states and territories (ST/T) of Australia 
partitioned by GCCs (a), and other areas (b). Note that the population density scale in (b) is more than 50 times lower than that in (a). The Australian 
Capital Territory (ACT) predominantly comprises urban areas and thus does not show a comparable density for non-GCC areas
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of Infrastructure, Transport, and Regional Economics 
(BITRE) [46], and we use this data to scale the number 
of initial infections in proportion to the international air 
traffic inflow, following earlier studies [18, 47]. The actual 
traffic data in 2021 were severely impacted due to travel 
restrictions imposed during the COVID pandemic. To 
account for this impact, in this study we use the BITRE 
air traffic data between 2003 and 2019 (inclusive) in esti-
mating the projected air traffic volume in 2021. See sec-
tion "International air traffic" below for more details.

Appendix B: Generation of artificial population
This section describes the construction of a surrogate 
Australian population using high-resolution datasets, 
including the ABS demographic fields from the Aus-
tralian census, international air traffic reports from 
the BITRE, and educational registration records from 
ACARA. These datasets provide high fidelity details 
encompassing age, gender, household composition, stu-
dent enrollment, workforce mobility, and international 
travel. Using these datasets, we generate a representa-
tive artificial population capturing unique demographic 

characteristics and mobility characterising the Australian 
population.

This section is structured as follows. Section "Agent-
based generation" explains the generation of individual 
agents and their matching demographic characteristics. 
Section "Surrogate domestic commuting network" details 
our approach to reconstructing the commuting net-
work which included travel to school and travel to work 
depending on agents’ age groups. Section "Interna-
tional air traffic" elaborates on the estimation of interna-
tional air traffic in 2021 using traffic records prior to the 
COVID-19 pandemic. The user guide of our open-source 
software provides more technical details [39].

Agent‑based generation
In this section, we describe agent generation procedure. 
Initially, we generate households and then assign each 
virtual agent with a household determined by the house-
hold composition in their residential SA1 areas. This is 
followed by assignment of demographic characteristics, 
including age and gender. The distribution of these agents 
in each SA1 matches the number reported in census 

Fig. 12  High variation of the population density across three Greater Capital Cities of Australia: Greater Sydney (left), Greater Melbourne (middle), 
and Greater Hobart (right). Population-dense areas are highlighted in darker colours, with intensity defined by the colour bar on the right. Note 
that boundaries in these figures are shown at SA2 resolution
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reports. We then generate agents across all SA1 areas to 
construct an Australia-wide population. In our popula-
tion generation process, we excluded all non-geographic 
regions (e.g., “Migratory/offshore/shipping” and “No 
usual address”) as these regions have no residential popu-
lation with specific addresses.

Household composition
Each agent is initially assigned to a household. The dis-
tribution of household size in each SA1 area matches the 
census data on household composition (i.e., the count of 
families in terms of the number of dependent children 
and/or non-family members, excluding overseas visitors), 
corresponding to the following five categories:

•	 single adults,
•	 couples without children (i.e., two adults),
•	 couples with one to four children,
•	 single-parent families with one adult and one to five 

children,
•	 non-family groups with two to six adults

A cumulative distribution function (CDF) of household 
composition is built for each SA1 area.

 SA1 population, age, gender, and residency.
Within the household, attributes of each agent (age, 
gender, and residency) are assigned to match the census 
records capturing the demographic diversity at the SA1 
resolution. Specifically, for each SA1, the ABS summa-
rises the number of individuals residing in this region, 
and the number of male/female residents categorised by 
five age groups as follows:

•	 early childhood (0–4 years old),
•	 school age (5–18 years old),
•	 young adult (19–29 years old),
•	 middle age (30–64 years old),
•	 elderly (65 years old and above).

CDFs of age groups are produced for male adults (aged 
19 and older), female adults (aged 19 and older), male 
children (aged 18 and younger), and female children 

Fig. 13  Geographic representation of Greater Capital Cities (in red), international airports (having international air traffic in 2019, in green), and other 
regions (in blue) across Australia. The boundaries are delineated based on the 2021 SA2-resolution map of Australia. For visual clarity, some 
Australian islands are not shown. Hobart is not annotated as there were no incoming international passengers to Hobart during the considered 
period (i.e., in 2019). The 3-letter code names for the annotated international airports are described in Table 4
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(aged 18 and younger). Other CDFs of children genders 
and adult genders are also created to support the sam-
pling processes requiring specification on agents’ gender 
(see following section).

Generation of simulated population
While each agent is assigned with demographic and 
household attributes as detailed in earlier sections, the 
total residential population and household count in 
each SA1 area are constrained by the aggregate number 
per SA1 reported by census. We assign the attributes as 
following:

•	 Step 1: For a given SA1 area, if the number of gen-
erated agents is less than the number of residential 
population reported by census, sample a household 
based on the CDF of households constructed from 
the ABS data.

•	 Step 2: Within each of the generated household, 
assign agents with genders and age groups (male/
female adults and/or children) based on the corre-
sponding CDFs.

For example, if the household instance sampled from the 
census data is a couple comprising two adults of oppos-
ing gender, with one child, the generated household will 
consist of three household members:

•	 an agent representing the father in this household, 
generated with its age sampled from the male adult 
CDF of age groups,

•	 an agent representing the mother in this household, 
generated with its age sampled from the female adult 
CDF of age groups,

•	 an agent representing the child in this household, 
generated with its gender sampled from the CDF of 

genders for children, and its age sampled from the 
CDF of age groups for children corresponding to the 
sampled gender.

This process continues until all SA1 areas are considered 
and the aggregate artificial populations matches the pop-
ulation statistics reported by census. During this process, 
every three consecutively generated households form a 
household cluster, representing a residential context with 
close contacts around the agents’ residency.

With the population generated at SA1 level, we fol-
low the partitioning method that the ABS uses to merge 
SA1 populations into SA2 populations. We note that no 
agents are generated during this process as all SA1 areas 
are included within SA2 areas. We assume that SA2 areas 
are spatially distributed and the geographic distance 
between any pair of SA2 areas is calculated as the dis-
tance between the centroids of two SA2 areas defined by 
the ABS-provided shapefiles representing geographical 
boundaries. This spatial distribution plays a crucial role 
in generating school placements for children and work-
ing group placements for adults.

As a result, the generated aggregate artificial popu-
lation is a “digital twin” of the Australian population, 
matching key census statistics, including the number of 
SA2 and SA1 areas, households, household clusters, and 
total agents. These statistics are summarised in Table 2. 
Note that in addition to residential contexts, a number of 
other mixing contexts is also reported in Table 2. DZNs 
and working groups (i.e., work-related environments) are 
allocated for adults, while schools, grades, and classes 
(i.e., education-related environments) are allocated for 
children. The allocation of these contexts is used in gen-
erating the commuting network, detailed in section "Sur-
rogate domestic commuting network".

Table 2  Summary of demographic attributes and mixing contexts of the surrogate population generated from 2016 and 2021 Census

The 4th column shows the relative increase for each attribute over the five-year period. The population expansion results in an increase across all residential and 
mixing contexts

Number of Census 2016 based Census 2021 based Increase (%)

SA2s (SLAs) 2310 2454 6.23

SA1s (CDs) 57,523 61,811 7.45

DZNs 9136 9307 1.87

Working Groups 470,608 530,988 12.83

Schools 9,463 9605 1.50

Grades 56,778 57,630 1.50

Classes 174,564 189,078 8.31

Households 9,656,841 10,802,052 11.86

Household Clusters 2,435,274 2,723,287 11.83

Population 23,406,541 25,428,029 8.64
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Surrogate domestic commuting network
In addition to the residential mixing contexts (see sec-
tion "Agent-based generation"), our model also consid-
ers interactions across spatially distributed agents which 
occur in workplaces and schools. The mobility patterns 
describing commuting to places of work and education 
are represented by a realistic commuting network con-
structed using the census commuting data and student 
registration records from ACARA [48]. In this network, 
we allocate population flows specifically capturing the 
student and worker flows between mutually exclu-
sive sets, e.g., between the usual residential areas (SA1 
areas) and the places of work (DZNs). In this section, we 
describe the construction of the student and worker flows 
in the commuting network in two parts: travel to school, 
applicable for agents from 5 to 18 years of age; and travel 
to work, applicable for agents over 18 years of age.

Travel to school
In our surrogate population, nearly 18% of the population 
are school-aged children (from 5 to 18 years old), with 
the vast majority of them (approximately 95%) going to 
school on weekdays during day time and interacting with 
other school-attending children and teachers. These at-
school interactions are enabled by integrating “student 
flows” into the commuting network. Each flow is set 
between the student residence (which has been previ-
ously assigned during the generation of simulated agents; 
see section "Agent-based generation") and the destination 
zones (i.e., schools).

Using the school enrollment numbers and locations 
reported by ACARA, the school locations are pseudo-
deterministically chosen within destination zones, while 
accounting for school capacity and geographic prox-
imity to areas with a sufficient number of children and 
teachers.

The allocation of schools is based on the following 
assumptions. The probability of students attending a 
school is set in proportion to the geographic distance 
between the school and their residence, within the 
school’s catchment zone. This process emulates the ten-
dency of students to initially prioritise schools in the clos-
est proximity. If schools nearby are unavailable, students 
are assumed to expand their search to nearby options 
within the maximum travel distance (150  km). This 
ensures that the vast majority of students are assigned to 
schools by the end of the generation process.

Within each school, students are further organised into 
smaller groups representing grades and classes, where 
classes represent the primary units of regular interaction 
for students with the highest frequency of contacts, fol-
lowed by grades. The contact rates in the school-environ-
ment are summarised in Table 5.

Upon completion of the student-to-school assign-
ments, we estimate the number of teachers working at 
a school based on the enrolment numbers of the school, 
the student-to-staff ratio (2:17) (approximated from his-
torical ABS data), and the estimated number of three 
teachers per class. We then randomly sample from the 
ensemble of adults working in the school’s DZN to match 
the estimated number of teachers. The remaining work-
force within the DZN is then assigned to non-school-
related working groups detailed in the following section.

Travel to work
We then construct a travel-to-work network for the 
remaining working population, capturing daily fre-
quent contacts at the workplace where each edge rep-
resents a worker flow between agents’ usual-residential 
areas (UR, previously assigned as detailed in section 
"Agent-based generation") and the corresponding 
places of work (POW). Within the working population, 
each agent is also assigned to a working group with a 
maximum of 20 people at work to simulate a realistic 
working environment where a small group of individu-
als frequently interact on a daily basis. This assignment 
process matches the key census attributes reported in 
travel-to-work (TTW) data [41] (i.e., the census table 
for employment, income, and education representing 
the number of commuters between UR and POW).

The work-related census reports partition the popula-
tion into multiple statistical area (SA) levels and Desti-
nation Zones (DZN), in ascending resolution. We note 
that DZN (i.e., the highest resolution for POW) does 
not align precisely with SA1 partitions (i.e., the high-
est resolution for UR). We use DZN and SA1 as two 
separate partitions simulated in different time cycles, 
daytime and nighttime, respectively (see Appendix 
section C below for more details). Each agent residing 
in a SA1 is randomly assigned to work in a DZN and 
the total number of registered commuters between 
the SA1 (considered as UR) and the DZN (considered 
as POW) must match the corresponding commuting 
volume reported by census. This process uses the high-
resolution worker flow data between SA1 and DZN 
to construct a high-fidelity TTW network between 
all URs and POWs. However, the implementation of 
privacy-protecting policies adopted by the ABS heav-
ily perturbed the data, resulting a sizable discrepancy 
between high-resolution data (e.g., SA1–DZN) to 
lower-resolution data (e.g., SA2–SA2). We consider and 
address this discrepancy in detail, as described below.

Inconsistencies in ABS data for travel to work The cen-
sus data contains inconsistencies between UR and POW 
data due to the adoption of new privacy protection meas-
ures, implemented within the ABS anonymity policy 
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compliance system over different census years [36, 37]. 
Such inconsistencies produce a mismatch in the com-
muting flows (between UR and POW) reported at differ-
ent SA partitions. These inconsistencies therefore require 
a reconstruction of some commuting flows between UR 
and POW, added to match the aggregate totals.

Specifically, the total number of commuters aggre-
gated at a higher resolution, e.g., between SA1 (UR) 
and DZN (POW), is usually less than its counterpart 
obtained from a lower resolution, e.g., between SA2 (UR) 
and SA2 (POW), as shown in Fig. 14). This results from 
various ABS privacy protection measures aimed to avoid 
re-identification from high-resolution commuting data, 
particularly when commuting volume is low. As a result, 
the working mobility in 2016 census shows a 34% differ-
ence between the aggregated and true commuters [37]. 
Here, we report a similar observation for 2021 census, 

with a difference of a 25.6% between the SA1–DZN and 
SA1–SA2 commuting datasets, and a 34.27% difference 
between the SA1–DZN and the total number of reported 
commuters in Australia (see Table 3).

Prior work resolving inconsistencies in 2016 census In 
our prior work [37], we proposed an algorithm that uses 
a statistical re-sampling process to generate and add new 
edges to the SA1-DZN commuting network. This con-
siderably improved the consistency of commuting flow 
across different resolutions. This algorithm used the 
commuting data from the older 2011 census as a baseline 
(existing prior to the implementation of privacy protec-
tion protocols), to supplement the commuting data in 
different resolutions in 2016 census. The main steps of 
the algorithm are summarised as follows:

Fig. 14  Visualisation of the discrepancies at different resolutions observed in 2021 census commuting data. Each subplot traces combinations 
between UR and POW for all possible resolutions. Across the UR ↔ POW flows, considered at comparable or higher resolutions (i.e., SA3–DZN, SA2–
DZN, and SA1–DZN), the edge numbers are noticeably lower towards the right hand side on x-axis, with a reduced number of commuters (y-axis)
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•	 Step 1: Calculate the historical (2011) distribution 
P(w|NSA1) of the number of commuters between 
UR (SA1) and POW (DZN) (i.e., edge weights of the 
edges (SA1, DZN) in the TTW network, denoted 
by w), given a working population size in SA1 level 
(denoted by NSA1).

•	 Step 2: Sample additional edges for each UR unit 
(SA1) based on P(w|NSA1) . The list of partial candi-
date edges, L = {(SA11,w1), ..., (SA1n,wn)} , is gener-
ated. The total sampled edge weights for an SA1 must 
be bounded by the inconsistencies between SA2 and 
SA1 levels (i.e., the difference between the number 
of commuters residing in an SA2 and the aggregated 
number of commuters residing in the corresponding 
decomposed SA1s).

•	 Step 3: Assign workplaces (DZN) for the newly 
sampled edges, i.e., to complete the list L: 
L = {(SA11,DZN1,w1),..., (SA1n,DZN1,wn)} . These 
assignments are constrained by the number of 
remaining unassigned commuters in each DZN and 
in the SA2-SA2 commuting network when com-
pared with the SA1-DZN network.

•	 Step 4: Eliminate reclaimed edges (i.e., the SA1-
DZN edges that the ABS already declared) and con-
catenate the remaining generated edges with the 
existing edges in 2016 census.

An optimised approach to address the inconsistencies in 
2021 census We optimised the algorithm originally pre-
sented in [37] and applied the optimisation to construct 
the travel-to-work network using 2021 census data. The 
optimised algorithm reduces the discrepancy in SA1–
DZN travel-to-work data by using the lower resolution 
commuting data as a reference point, since the privacy 
protocols mostly affect the higher resolution commut-
ing data. For example, there is only a marginal reduction 
(1.42%) in the number of commuters observed in the 
SA2–SA2 network, compared to a significantly more siz-
able 34.27% reduction observed in the higher-resolution 
SA1–DZN network, as summarised in Table 3.

The optimised re-sampling algorithm reconstructing 
the surrogate TTW network is detailed in Algorithm  1, 
with the changes to the original algorithm [37] highlighted 
in blue. Similar to the original approach, in the optimised 
algorithm, a number of unassigned working-age agents 
in an SA1i region is selected at random and assigned to 
a random working group in a DZNi region. The assign-
ment of the residential area and the destination zone is 
constrained by the edge weight wi of the corresponding 
edge ( SA1i, DZNi,wi) in the surrogate network. We intro-
duced several additional constraints to check the eligi-
bility of newly generated edges (step (3) of Algorithm 1), 
before adding them to the edge-list of the surrogate net-
work. This modification ensures that the sampled artificial 
edges are not duplicates of existing edges and improves 
the quality of the final surrogate edge-list. This however 
had a cost of significantly lengthening the processing time 
relative to the original algorithm [37]. To speed up the 
computation, we adjusted the sampling process by sam-
pling a uniformly random number of edges ( rand(N ) ) in 
the existing edge-list for each DZN at a time. This method 
significantly reduced the computational cost.

Table 3  Summary of working flows between the usual 
residential (UR) and the place-of-work (POW), reported at 
different resolutions of statistical areas defined by census

At each resolution, the number of edges specifies the number of destinations 
(connections between these regions), while the number of commuters 
represents the aggregated number of commuters in all edges at this resolution. 
The last column shows the discrepancy (a reduction measured in percentage) 
between the specified resolution and the reference resolution. Note that census 
data are pre-processed, with all non-geographic regions (e.g., “Migratory/
offshore/shipping” and “No usual address”) excluded

UR-POW
Resolutions

Number of edges Number of 
commuters

Reduction 
in registered 
commuters

SA1–AUS 60,126 12,038,052 Reference

SA1–STT 78,461 11,991,363 0.39%

SA1–SA4 383,454 11,821,831 1.80%

SA1–SA3 668,132 11,558,487 3.98%

SA1–SA2 1,165,986 10,633,702 11.67%

SA1–DZN 1,185,396 7,913,093 34.27%

SA2–AUS 2415 12,049,439 Reference

SA2–STT 12,242 12,046,956 0.02%

SA2–SA4 48,929 12,018,402 0.26%

SA2–SA3 91,426 11,985,868 0.53%

SA2–SA2 269,261 11,878,866 1.42%

SA2–DZN 591,375 11,083,493 8.02%

SA3–AUS 354 12,049,397 Reference

SA3–STT 2637 12,049,398 0.0%

SA3–SA4 17,257 12,043,898 0.05%

SA3–SA3 31,971 12,032,775 0.14%

SA3–SA2 83,778 11,995,534 0.45%

SA3–DZN 198,299 11,397,507 5.41%
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Algorithm 1  Optimised algorithm generating the 2021 travel-to-work (TTW) surrogate network
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Comparison of the network reconstruction results Our 
optimised algorithm significantly improved the mapping 
between SA2–SA2 and SA1–DZN networks from 69.77% 
(between the census SA2–SA2 and SA1–DZN networks) 
to 92.87% (between our reconstructed SA2–SA2 and 
census SA2–SA2 networks), thus accounting for missing 
edges. It provided further improvement in comparison 
to the prior algorithm [37], which reconstructed 90.66% 
of the mapping between census SA2-SA2 and SA2-SA2 
networks, as shown in Fig.  16a). The re-sampling pro-
cess reduces the number of unassigned commuters in the 
SA2-SA2 TTW network from 3,469,391 to 835,534, as 
shown in Fig.  16b.

The optimised algorithm reconstructs the SA2–SA2 
surrogate network with a smaller mean squared error 
(MSE) and a higher correlation with the true commuter 
flow (i.e., census SA2–SA2 network), as shown in Fig. 16c 
and d.

The resultant commuting patterns generated from 2021 
census are shown in Fig. 15 with the Greater Capital Cit-
ies (GCC) annotated within each state.

We note that although our solution effectively rectified 
most of the discrepancies between SA1–DZN and SA2–
SA2 networks using the re-sampling procedure, it can-
not provide a complete mapping between the SA2–SA2 
network and the lower resolution networks because the 
algorithm does not introduce new edges (i.e., new com-
muting flows) beyond the edges already present in the 
census SA2–SA2 network (see Table  3 and Fig.  14b). 
However, the proposed re-sampling algorithm is able to 
produce a surrogate travel-to-work network that ade-
quately represents the census data by supplementing 
the vast majority of missing edges, as shown in Figs. 15 
and 16.

International air traffic
In our model, the initial infection cases are seeded pro-
portionally to the international air traffic inflow. The 
scenarios for 2016 use the BITRE air traffic data for this 
year without any modifications. In contrast, to simu-
late the pandemic scenarios for 2021, we estimate the 

Fig. 15  Visualisation of commuting patterns between usual residences (URs) and places of work (POWs), using 2021 census data. Each commuting 
flow is represented by an edge connecting the centroids of the corresponding UR and POW. Red lines represent the commuting edges 
between URs (in SA1 level) and POWs (in DZN level) directly taken from 2021 census, while blue lines depict the reconstructed edges created by our 
algorithm to match the aggregate totals
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international air travel for this year based on the BITRE 
air traffic data between 2003 and 2019. We intentionally 
do not use the air traffic data between 2020 to 2021 due 
to the severe disruption of international travel due to the 
travel restrictions during the COVID-19 pandemic.

We approximated the daily average number of incom-
ing international passengers (IIP) at the international air-
ports across Australia 2021 by utilising the international 
air traffic data up to 2019 [46] which reports the total 
number of IIP for a given year (reported by June) at vari-
ous international airports across the country. We then 
extrapolated the number of IIP in this period by using a 
weighted multimodal linear regression model. We placed 
a higher weight ( γ = 0.8) on more recent data points and 

constructed the linear regression model which produced 
the most optimised estimates with small weighted losses. 
We note that while larger international airports (e.g., 
Sydney, Melbourne, Brisbane, and Adelaide, shown in 
Fig. 17) have a sustained inflow of IIP since 2003, small 
airports (e.g., Darwin) may not have a continuous IIP 
until the more recent years. In such cases, we could not 
produce an accurate weighted linear model due to the 
lack of data; instead, we estimated the IIP in 2021 by 
averaging the IIP in available years. A comprehensive 
summary of the estimation methods employed for each 
international airport is provided in Table  4. The linear 
regression model for eligible airports is shown in Fig. 17.

Fig. 16  Results of network reconstruction using the 2021 TTW data. a Number of commuters between the reference TTW SA2–SA2 network 
(from ABS Data), the TTW SA1–DZN network (from ABS Data), the TTW SA1–DZN network (refined by the original algorithm of Fair et al. [37], 
adapted for census 2021), and the TTW SA1–DZN network (refined by the optimised algorithm). b Number of unassigned commuters, counted 
in SA2–SA2 network but not in SA1–DZN network, over refining iterations. c Mean squared error between the SA2–SA2 TTW network from ABS 
and the reconstructed SA2–SA2 TTW network from the refined SA1-DZN networks. d Pearson’s correlation coefficient between the SA2–SA2 TTW 
network from ABS and the reconstructed SA2–SA2 TTW network from the refined SA1–DZN networks
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Fig. 17  Weighted linear regression models for the considered airports across Australia. The incoming international passengers (IIP) numbers 
in previous years up to 2019 are shown in blue; the projected IIP numbers in 2021 are shown in red. Solid red line represents the fitted linear 
regression model
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Appendix C: Transmission and control model
Transmission model
The transmission of SARS-CoV-2 in our Agent-based 
Model of Transmission and Control of the COVID-19 
pandemic in Australia (AMTraC-19) is simulated using 
agent interactions in the generated surrogate popula-
tion. The model operates in discrete time steps, with 
each step representing a 12-hour cycle (either daytime 
cycle or nighttime cycle). In daytime cycle, interactions 
occur within the working/studying groups, i.e., in the 
work and education contexts; in nighttime cycle, inter-
actions occur in the residential mixing contexts within 
communities (SA2 wide), neighbourhoods (SA1 wide), 
household clusters, and households. We also account 
for differences between weekdays and weekends. A 
weekday (Monday to Friday) consists of a daytime cycle 
and a nighttime cycle, while a weekend consists of two 
nighttime cycles (i.e., no work-related activities).

The initial infections are seeded as imported infec-
tions dependent on the air traffic using international 
passenger data published by the Bureau of Infrastruc-
ture and Transport Research Economics (BITRE). At 
each time step, until border restrictions are imposed, 
new infections are introduced within a 50-km radius of 
major international airports, in proportion to the inter-
national travel influx.

A simulation scenario begins with an initial distribu-
tion of infections determined by a binomial distribu-
tion with the probability proportional to the average 

number of incoming passengers at the international 
airports (see section “Urban structure and international 
air traffic”). These infected agents are then assigned to 
a randomly selected residential area within some dis-
tance to an international airport. This seeding process 
takes place at the start of each simulation day and con-
tinues daily until the international border closures are 
triggered by a defined cumulative incidence threshold.

To re-iterate, at time cycle n, the probability for an 
susceptible agent i becoming infected across context 
g ∈ Gi is determined as follows (see Eq. 1):

where Ag\{i} represents the set of agents in the context 
g ∈ Gi excluding agent i, and pgj→i(n) denotes the instan-
taneous probability that an infectious agent j, who shares 
the context g with susceptible agent i, transmits the infec-
tion to agent i:

A global transmission scalar, denoted by κ , is used to cali-
brate the reproductive number R0 . The time cycle nj indi-
cates the moment when agent j becomes infected, while 
the function f (n− nj|j) represents the natural history of 
the disease, reflecting the infectivity of agent j over time. 
If agent j is not infected, n < nj and f (n− nj|j) = 0 . If 

(3)p
g
i (n) = 1−

∏

j∈Ag\{i}

(1− p
g
j→i(n))

(4)p
g
j→i(n) = κ f (n− nj|j) q

g
j→i

Table 4  Estimated number of incoming international passengers (IIP) in the international airports across in Australia in 2021, projected 
from the pre-pandemic BITRE data

The estimated IIP is used for the initial infection seeding (see section "Results")

Airport Code State Location (SA2) Estimated IIP Estimation method

 Sydney  SYD  NSW  117011325  9,010,895  Weighted Linear Regression

 Newcastle  NTL  NSW  106031125  3493  Same as 2019

 Melbourne  MEL  VIC  210051248  6,222,130  Weighted Linear Regression

 Brisbane  BNE  QLD  302031036  3,262,860  Weighted Linear Regression

 Cairns  CNS  QLD  306011140  358,596  Weighted Linear Regression

 Gold Coast  OOL  QLD  309021231  534,733  Averaging data from 2017, 2018, and 2019

 Sunshine Coast  MCY  QLD  316031426  9414  Weighted Linear Regression

 Townsville  TSV  QLD  318021475  1031  Same as 2019

 Adelaide  ADL  SA  404031104  589,199  Weighted Linear Regression

 Perth  PER  WA  506021121  2,206,807  Averaging data from 2017, 2018, and 2019

 Port Hedland  PHE  WA  510021269  4505  Weighted Linear Regression

 Darwin  DRW  NT  701011001  128,585  Averaging data from 2017, 2018, and 2019

 Canberra  CBR  ACT​  801031114  39,374  Averaging data from 2017, 2018, and 2019
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agent j is infected, n ≥ nj and f (n− nj|j) ≥ 0 . The infec-
tivity increases exponentially since the latent period 
ends (the latent period can be set to zero for some vari-
ants), until it reaches its peak at f (n− nj|j) = 1.0 . Sub-
sequently, during the recovery period, the infectivity 
decreases linearly to zero, leading to the agent transi-
tioning to the Removed state. The changes in infectivity 

of an infected agent are plotted in the main manuscript, 
see Fig.  1. The upper bounds of the daily probabili-
ties of transmission from agent j to agent i, denoted by 
q
g
j→i , which depends on age and mixing contexts. Table 5 

summarises the daily transmission probabilities for age-
dependent interactions in different mixing contexts. 
These probabilities have been derived and validated in 
prior studies [13, 15, 18, 21], and despite being relatively 
small, need to be specified with a sufficient precision, 
given a large number of interacting agents.

The infection probability for agent i across all mix-
ing contexts is calculated as shown in the main text, see 
Eq. 2:

At the end of each time cycle, a Bernoulli sampling pro-
cess based on the probability pi(n) is used to decide 
whether a susceptible agent i acquires the infection.

An infected agent can be either symptomatic or asymp-
tomatic. The probability of symptomatic illness is deter-
mined with respect to the infection probability pi(n) , by 
incorporating a scaling factor σ that represents the frac-
tion of symptomatic cases among the total cases:

where σ(i) is defined based on the age of agent i using 
a piece-wise approach: for adults ( age > 18 ), σa = 0.67 ; 
and for children ( age ≤ 18 ), σc = 0.268 , following previ-
ous studies [13, 15, 18, 21]. Asymptomatic agents in the 
model have a lower infectivity compared to their sympto-
matic counterparts, governed by a scaling factor of αasymp 
( 0 ≤ αasymp ≤ 1).

In reality, not all infection cases are detected, par-
ticularly when case detection relies on voluntary self-
reporting. To capture this feature, the model employs 
two variables adjusting the extent of case detection as the 
probability of detecting symptomatic cases ( πsymp ) and 
the probability of detecting asymptomatic cases ( πasymp).

In this study, we model the transmission of three 
COVID-19 variants of concern in a wide of range of sce-
narios in combination with different intervention poli-
cies. Some epidemiological parameters are set differently 
across the three variants, while others are kept constant 
for all variants. A summary of parameterisation is pro-
vided in Table 6.

(5)pi(n) = 1−
∏

g∈Gi(n)

∏

j∈Ag\{i}

(

1− p
g
j→i(n)

)

(6)pdi (n) = σ(i) pi(n)

Table 5  Daily transmission probabilities q
g
j→i from infected 

agent j to susceptible agent i for different mixing contexts and 
interaction types

Numbers in brackets show age groups

Mixing context Type of interaction Daily transmission 
probability ( qg

j→i
)

Household (size 2) Any to child (0–18)              0.09335

Any to adult (19+)              0.02420

Household (size 3) Any to child (0–18)              0.05847

Any to adult (19+)              0.01495

Household (size 4) Any to child (0–18)              0.04176

Any to adult (19+)              0.01061

Household (size 5) Any to child (0–18)              0.03211

Any to adult (19+)              0.00813

Household (size 6) Any to child (0–18)              0.02588

Any to adult (19+)              0.00653

Household Cluster Child (0–18) to child (0–18)              0.00400

Child (0 - 18) to adult (19+)              0.00400

Adult (19+) to child (0–18)              0.00400

Adult (19+) to adult (19+)              0.00400

Working Group Adult (19+) to adult (19+)              0.00400

School Child (0–18) to child (0–18)              0.00029

Grade Child (0–18) to child (0–18)              0.00158

Class Child (0–18) to child (0–18)              0.00865

Neighborhood Any to child (0–4)              
0.035× 10

−5

Any to child (5–18)              
1.044× 10

−5

Any to adult (19–64)              
2.784× 10

−5

Any to adult (65+)              
5.568× 10

−5

Community Any to child (0–4)              
0.872× 10

−6

Any to child (5–18)              
2.608× 10

−6

Any to adult (19–64)              
6.960× 10

−6

Any to adult (65+)              
13.92× 10

−6
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 Non‑pharmaceutical interventions
The model incorporates various non-pharmaceutical 
interventions (NPIs) aimed to mitigate SARS-CoV-2 
transmission, including case isolation (CI), home quar-
antine (HQ), school closures (SC), and social distancing 
(SD). Each NPI is characterised by: (i) macro-distancing 
level, setting a fraction of the population that adopts, or 
complies with, the intervention, and (ii) micro-distancing 
parameters which quantify the adjusted (usually reduced) 
interaction strengths between the agents who have 
adopted the NPI and other agents in the shared mixing 
groups. The infection probability pi(n) for individuals 
who have adopted an NPI is adjusted as follows:

(7)

pi(n) = 1−
�

g∈Gi(n)



1− Fg (i)



1−
�

j∈Ag\{i}

(1− Fg (j) p
g
j→i(n))









where Fg (j) is the strength of the interaction between 
agent j and other agents in the mixing context g. For 
NPI-adopting agents j, the interaction strength is modi-
fied: Fg (j)  = 1 . For non-adopting agents j, the interaction 
strength is unchanged: Fg (j) = 1.

While CI and HQ are activated from the beginning of 
the simulation and last throughout the entire simula-
tion period, SD and SC are triggered only if the cumu-
lative incidence nationwide exceeds certain threshold. 
Thus, in general, an NPI is activated once the cumulative 
incidence exceeds a defined, NPI-dependent, threshold. 
Agents are assigned to adopt NPIs according to a Ber-
noulli process. In addition, CI only applies to sympto-
matic cases or the detected infections of asymptomatic 
individuals. Agents can adopt more than one NPIs when 
multiple NPIs are active, but their interaction strengths 
are set to the value of Fg (j) following a descending 

Table 6  Model parameterisation for the three considered variants of concern (i.e., ancestral, Delta, and Omicron) adopted by 
AMTraC-19

The last two rows show the corresponding basic reproductive number ( R0 ) and generation/serial interval ( Tgen ), calibrated in our previous studies [13, 15, 18, 21]

Model parameters Ancestral Delta Omicron Note

κ 2.75 5.3 23 Global transmission scalar

Tinc , mean 5 ( µ=1.609 σ=0.00001) 4.4 ( µ=1.396 σ=0.413) 3 ( µ=1.013 σ=0.413) Incubation period (log-normal)

Trec , mean and range 12 [12,12] 10.5 [7, 14] 9 [7,11] Recovery period, mean and range (uniform)

Tlat , fixed 2 0 0 Latent period

αasymp 0.3 Asymptomatic transmission scalar

σa 0.67 Probability of symptoms (age > 18)

σc 0.268 Probability of symptoms (age ≤ 18)

πsymp 0.1 Daily case detection probability (symptomatic)

πasymp 0.01 Daily case detection probability (asymptomatic)

R0 , mean and 95% CI 2.77 [2.73,2.83] 5.97 [5.93, 6.00] 19.56 [19.12, 19.65] Basic reproductive number

Tgen , mean and 95% CI 7.62 [7.53, 7.70] 6.88 [6.81, 6.94] 5.42 [5.38, 5.44] Generation/serial interval

Table 7  The macro-distancing parameters (population fractions) and micro-distancing (interaction strengths) for the considered NPIs

The micro-duration of CI is limited by the disease progression in the affected agent i, D(i). Compliance levels for SC for students/teachers and parents can be different, 
as indicated by distinct settings for SCs/t and SCp , respectively

Intervention Macro-distancing (population fractions) Micro-distancing (interaction strengths)

Compliance level Duration T 
(days)

Threshold 
(cases)

Household Community Workplace\
School

Duration 
t (days)

CI 0.7 196 0 1.0 0.25 0.25 D(i)

HQ 0.5 196 0 2.0 0.25 0.25 7

SCs/t 1.0 110 100 1.0 0.5 0 110

SCp 0.25 110 100 1.0 0.5 0 110

SD 0.7 196 400 1.0 0.25 0.1 196
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priority assignment order: CI, HQ, SD, and SC. In this 
study, we assume static adoption/compliance-with NPI 
for CI, HQ, SC, and SD (i.e., adoption/compliance level 
remains constant throughout the simulation). The NPI 
parameterisation, encompassing both macro-distancing 
and micro-distancing levels, is presented in Table 7.

Vaccination
In this study, we consider several scenarios with a partial 
vaccination preemptively rolled out before a pandemic 
wave (Policies 3, 4, and 5 as shown in Fig. 2 in the main 
manuscript). In these scenarios, the vaccination cover-
age is set to 50% of the population prior to the simula-
tion start, corresponding to 11.7 million agents using 
2016 census, or 12.712 million agents using 2021 cen-
sus. The vaccines are distributed to different age groups 
as follows: 8.33% of vaccinated agents are aged 18 years 
or younger ( age ≤ 18 ), 83.34% are aged between 18 and 
65 years ( 18 < age < 65 ), and 8.33% are aged 65 years 
or older ( age ≥ 65 ). In our model, the vaccination roll-
out contains two types of vaccines: the “priority” vac-
cine with a higher clinical efficacy (Priority, VEc = 0.7 ), 
representing BNT162b2 (Pfizer/BioNTech) and Mod-
erna; and the “general” vaccine with a medium efficacy 
(General, VEc = 0.5 ), representing ChAdOx1 nCoV-19 
(Oxford/AstraZeneca). These values align with clinical 
observations following booster vaccination against the 
Omicron variant [49]. For simplicity, we use the clinical 
vaccine efficacy against Omicron as a reference point for 
all considered variants, aiming to investigate the impact of 
imperfect vaccines in a comparative way.

We further decompose VEc into two efficacy compo-
nents: the susceptibility-reducing efficacy ( VEs ) and the 
disease-preventing efficacy ( VEd ), following [13, 15, 21]:

with the efficacy components set as specified in Table 8.
We also consider the transmission-limiting efficacy ( VEt ) 

set at VEt = 0.4 , observed for the considered vaccines 
against the Omicron variant [50]. We carried out the sen-
sitivity analysis in terms of vaccine efficacy components in 
prior studies [13, 21], testing a range of VEt and VEc values 
and showing robustness of the model to changes in these 
efficacy components. The model parameterisation with 
respect to vaccination is provided in Table 8.

The transmission probability of infecting a suscepti-
ble agent i, accounting for both vaccination and NPIs, is 
derived as follows:

where for all vaccinated agents j: VEt
j = VEt , VEs

j = VEs 
and VEd

j = VEd , and for all unvaccinated agents j: 

VEt
j = VEs

j = VEd
j = 0 . The values of VEs , VEd , and VEt 

are selected according to the vaccine type (priority or 
general) allocated to the agent.

(8)VEc = VEd + VEs − VEs × VEd

(9)

pi(n) =1−
�

g∈Gi(n)

�

1− (1− VEs
i )Fg (i)



1−
�

j∈Ag\{i}

(1− (1− VEt
j )Fg (j) p

g
j→i(n))









Table 8  Simulation parameters for the preemptive vaccine rollout simulated within the ABM

Parameter Value (census 2016) Value (census 2021) Reference

Priority vaccine coverage 5.850M 6.356M 25% of total population

General vaccine coverage 5.850M 6.356M 25% of total population

Vaccine allocation [age ≤ 18] 0.975M 1.059M 8.33% of vaccinated population

Vaccine allocation [18 < age < 65] 9.750M 10.594M 83.34% of vaccinated population

Vaccine allocation [age ≥ 65] 0.975M 1.059M 8.33% of vaccinated population

Priority, VEc 0.7 [49]

Priority, VEs 0.452 Derived

Priority, VEd 0.452 Derived

Priority, VEi 0.4 [50]

General, VEc 0.5 [49]

General, VEs 0.293 Derived

General, VEd 0.293 Derived

General, VEi 0.4 [50]
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The probability of an agent experiencing illness (symp-
tomatic) is further influenced by the disease-preventing 
efficacy, ( VEd

i  ), as follows: pdi (n) = (1− VEd
i ) σa|c pi(n) , 

given the fractions of symptomatic adults and children, 
denoted by σa and σc , respectively.

Sensitivity analysis
We have carried out an extensive sensitivity analysis for a 
wide range of model parameters and multiple variants of 
concern, including different profiles of the disease natural 
history [13, 18, 26], the global transmission scalar [15, 18, 
26], the asymptomatic infectivity [15, 18, 26], the fractions 
of symptomatic adults and children [13, 15, 18, 26], the 
NPI compliance levels (e.g., SD compliance [13, 15, 18]), 
the SD intervention threshold [26], the interaction strength 
in different mixing contexts (at home, work, or commu-
nity [18]), and the vaccination coverage and vaccine effi-
cacy components [18, 21]. These studies demonstrated 

robustness of the model to parameter changes within 
acceptable ranges supported by epidemiological evidence.

Appendix D: Lorenz curves
The pandemic Lorenz curves measure unequal contri-
butions of SA2 areas towards the aggregate nationwide 
pandemic severity (introduced in section "Lorenz curves: 
measuring unequal distribution of pandemic severity" of 
the main manuscript) and are constructed as follows: 

1.	 Record the national cumulative incidence at the end 
of simulation (196 days), CIAUS,T=196.

2.	 Compute local attack rate, ARSA2 , as the ratio 
between the cumulative incidence and the total popu-
lation, both taken at SA2 level, as ARSA2 =

CISA2,T=196

URSA2
 , 

where CISA2,T=196 is the local cumulative incidence 
at the end of the simulation (196 days) and URSA2 is 
the usual residential population.

3.	 Rank SA2 areas by their local attack rate in ascending 
order. Using this rank, add one SA2 at a time to accu-
mulate the population fraction reaching the national 
total, from 0% to 100%, until all SA2 areas are consid-
ered. This forms the x-axis.

4.	 Following the rank of SA2 areas in terms of their 
local attack rate, determined in the previous step, 
add one SA2 at a time to compute the fraction of the 
national cumulative incidence for the considered SA2 
areas, from 0% to 100%, until all SA2 areas are con-
sidered. This forms the y-axis.

Table 9  Lorenz curves setup: demographic and epidemic 
characteristics of a simplified example

SA2 CI UR AR ARSA2 rank

SAx 12 40 12/40 = 0.3 1

SAy 15 24 15/24 =0.625 3

SAz 18 36 18/36 =0.5 2

National total 45 100 45/100 = 0.45 NA

Fig. 18  Constructing pandemic Lorenz curve for the simplified example, using the data presented in Table 9
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5.	 Connect all data points to form a pandemic Lorenz 
curve.

Let us consider a simplified example of the national pop-
ulation, comprising the populations of three SA2 areas, 
namely SAx , SAy , and SAz , with demographic and epi-
demic characteristics specified in Table 9.

Using Table 9, we can compute the corresponding pan-
demic Lorenz curve, shown in Fig. 18:

In this example, the three considered SA2 areas con-
tribute unequally towards the global attack rate, with SAx 
having the smallest gradient and thus deviating furthest 
from the line of equality (i.e., diagonal line). When using 

the census data, we follow this process for all SA2 areas 
across the country: 2,310 SA2 areas in 2016 and 2,454 
SA2 areas in 2021.

Appendix E: Supporting results
In this study, we systematically compared various 
COVID-19 pandemic scenarios across different census 
years, intervention strategies, and variants of concern. 
This section complements results presented in sec-
tion  "Results" in the main manuscript and follows the 
same structure, providing supporting results in terms 
of the effects of population heterogeneity on pandemic 

Fig. 19  Number of SA2 areas exhibiting an incidence peak in the simulated time period, across three considered policies: Policy 1, Policy 4, 
and Policy 5, and three variants: a ancestral; b Delta; c Omicron. Each plot is averaged over 100 runs



Page 32 of 45Nguyen et al. Population Health Metrics           (2023) 21:17 

severity (Section E.1), the impact of urbanisation on the 
spread of the virus (Section "Effects of urbanisation on 
pandemic spread"), and the effects of school closures 
across variants of concern (Section "Effects of school clo-
sures across variants of concern").

Effects of population heterogeneity on pandemic severity

Population growth amplifies pandemic peaks

Figure 19 shows that in comparison to 2016 results (solid 
blue line), there are more SA2 areas in 2021 that peak 
around similar times across all variants and policies (solid 
orange line). In cases where two peaks are observed (e.g., 
Fig.  19c), in 2021, the time difference between the two 
peaks is shortened, explaining the weakened bimodal 
dynamics (Figs. 5 and 8 in main manuscript) as the two 
incidence peaks tend to merge into a single but wider 
incidence wave.

Changes in population size amplify incidence peak more 
than changes in density Fig.  20 shows a weaker yet sig-
nificant correlation between the usual residential popula-
tion density difference and the peak incidence difference, 
computed between 2016 and 2021 at the SA2 resolution 
for three considered variants. The statistical analysis of 
the linear fits, shown in Figs. 20 and 6, is summarised in 
Table 10 below.

Table 10  Statistical analysis of the linear fits shown in Fig.  9 in 
main manuscript (effects of population size difference) and 
Appendix Fig.  20 (effects of population density difference), in 
terms of the square of the correlation ( R2 ) and the root mean 
squared error (RMSE)

Variant of concern Usual residential 
population

Population 
density

R
2 RMSE R

2 RMSE

Ancestral 0.607 0.296 0.206 0.393

Delta 0.432 0.694 0.15 0.788

Omicron 0.81 0.561 0.25 1.02

Fig. 20  Correlation between the usual residential population density difference and the peak incidence difference, computed between 2016 
and 2021 at the SA2 resolution for the three considered variants: ancestral (blue), Delta (green), and Omicron (red). Data points corresponding 
to each SA2 area are derived as the averages over 100 runs. Dashed lines represent linear fit for each of the profiles. Total number of overlapping 
SA2 areas between 2016 and 2021 census years: 2,147. Pearson correlation coefficients: rancestral = 0.4150 , rDelta = 0.3426 , rOmicron = 0.4509 . These 
are lower correlation coefficients than the ones obtained for the population size difference, as reported in main manuscript, Fig. 6
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We performed further analyses investigating the impact 
of large households on pandemic severity at SA2 level by 
looking at (i) the average household size, (ii) the popula-
tion within an SA2 area residing in households of two dif-
ferent sizes: large households (i.e., at least five household 
members), and small households (i.e., up to four house-
hold members). Note that this partition is based on the 
number of total household members, regardless of the 
household composition.

Fig.  21 shows some correlation between the average 
household size and the peak incidence for three consid-
ered variants in two census years at the SA2 resolution 
( 0.23 < r < 0.34 ). However, there is no clear correla-
tion between the average household size difference and 

Table 11  Pearson correlation coefficients (i) between the peak 
incidence and the average household size, as shown in Appendix 
Fig. 21 (effect of the average household size in 2016 and 2021), 
and (ii) between the peak incidence and the difference in 
average household size between 2016 and 2021, as shown in 
Appendix Fig. 22 (effects of the difference in average household 
size)

Variant of concern Average household size �(average 
household 
size)2016 2021

Ancestral 0.330 0.244 0.078

Delta 0.333 0.234 0.163

Omicron 0.327 0.218 0.031

Fig. 21  Correlation between the average household size and the peak incidence between 2016 and 2021 at SA2 resolution for three considered 
variants: a ancestral, b Delta, and c Omicron. Data points corresponding to each SA2 are computed as the average over 100 runs. Total number 
of overlapping SA2 areas between 2016 and 2021 census years: 2147. Refer to table 11 for Pearson correlation coefficients
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the peak incidence difference between 2016 and 2021 
( 0.03 < r < 0.17 ). The correlation coefficients are sum-
marised in Table 11 below.

It is evident that there is a strong correlation between a 
sub-population and the peak incidence regardless of the 
household size (Figs. 23, 25 and Table 12), with the sub-
population residing in small households showing a higher 
correlation in each census year.

The correlation between the peak incidence differ-
ence and the sub-population difference (Fig. 24 for large 
households, and Fig. 26 for small households) is slightly 
weaker, see Table 12. Interestingly, for the Delta variant, 
the correlation between the peak incidence difference 
and the difference in large-household sub-population is 
higher ( r = 0.611 ) than its counterpart for small house-
holds ( r = 0.522).

Pandemic severity is distributed unequally across local 
(SA2) areas In this section, we present pandemic Lorenz 
curves directly comparing variants of concern for differ-
ent policies and census years (Fig. 27).

Effects of urbanisation on pandemic spread
Over the last five years, the Australian population 
has increased in both urban and non-urban (i.e., 
regional and rural) areas, leading to redefinition 
of SA2 boundaries (see Table  13). There are several 
non-GCC cities in Australia with international air-
ports (see Fig. 13 in Appendix, shown in green). The 
inclusion of the SA2 areas surrounding these cities 
into analysis of the urban areas does not affect the 
observations reported in section "Effects of urbanisa-
tion on pandemic spread" of main manuscript. In this 

Fig. 22  There is no clear correlation between the difference in average household size and the peak incidence difference, computed 
between 2016 and 2021 at SA2 resolution for three considered variants: ancestral (blue), Delta (green), and Omicron (red)
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Fig. 23  Strong positive correlation between the sub-population residing in large households in an SA2 area and the peak incidence, determined 
at SA2 resolution across two census years (2016 and 2021) and three considered variants: a ancestral, b Delta, and c Omicron. Data points 
corresponding to each SA2 are computed as the average over 100 runs. Pearson correlation coefficients r are summarised in Table 12

Fig. 24  Strong correlation between the difference in sub-population residing in large households and the peak incidence difference between 2016 
and 2021 at SA2 resolution for three considered variants: ancestral (blue), Delta (green), and Omicron (red). Dashed lines represent linear regression 
for each of the profiles. Data points corresponding to each SA2 are computed as the average over 100 runs. Pearson correlation coefficients r are 
summarised in Table 12
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Fig. 25  Strong positive correlation between the sub-population residing in small households in an SA2 area and the peak incidence, determined 
at SA2 resolution across two census years (2016 and 2021) and three considered variants: a ancestral, b Delta, and c Omicron. Data points 
corresponding to each SA2 are computed as the average over 100 runs. Pearson correlation coefficients r are summarised in Table 12

Table 12  Pearson correlation coefficients between sub-populations residing in households of different sizes and the peak incidence, 
as well as between differences in these quantities

(i) For large households, compare with Appendix Fig. 23 (effects of sub-populations residing in large households in 2016 and 2021) and Fig. 24 (effect of the difference 
in this sub-population). (ii) For small households, compare with Appendix Fig. 25 (effects of sub-population residing in small households in 2016 and 2021) and Fig. 26 
(effect of the difference in this sub-population)

Variant of concern Large households Small households

2016 2021 �(large households) 2016 2021 �(small 
households)

Ancestral 0.841 0.808 0.415 0.958 0.959 0.712

Delta 0.845 0.506 0.611 0.966 0.964 0.522

Omicron 0.839 0.801 0.437 0.982 0.979 0.844
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Fig. 27  Pandemic Lorenz curves for the considered policies across the three variants and two census years. Each row compares the impact 
of a policy using 2016 census (left) and 2021 census (right) for three variants. Refer to Figure 2 in the main manuscript for a detailed description 
of the considered intervention policies. Each profile corresponds to one intervention policy and is computed as the average over 100 runs
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Fig. 28  GCCs versus other non-urban areas. Effects of urbanisation on pandemic dynamics for the considered policies, across three variants, using 
2016 and 2021 census years. We partition SA2 areas in Australia as Greater Capital Cities (GCCs), and other non-urban areas. Each column compares 
the impact of five intervention policies for a variant of concern: a ancestral; b Delta; c Omicron. Each plot is averaged over 100 runs
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Fig. 29  GCCs and APs versus other non-urban areas. Effects of urbanisation on pandemic dynamics for considered policies, across three variants 
using 2016 and 2021 census years. We partition SA2 areas in Australia as Greater Capital Cities (GCCs) and those close to international airports (APs), 
and other non-urban areas. Each column compares the impact of five intervention policies for a variant of concern: a ancestral; b Delta; c Omicron. 
Each plot is averaged over 100 runs
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Fig. 30  Pandemic Lorenz curves for considered variants across policies and census years. Each column compares the impact of five intervention 
policies for a variant of concern for GCCs and non-GCCs: a ancestral; b Delta; c Omicron. Each profile corresponds to one intervention policy 
for Australia (red), GCCs (green), or other non-urban areas (blue), and is computed as the average over 100 runs
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section, we compare the effects of growing urbanisa-
tion on pandemic dynamics for Greater Capital Cit-
ies (GCC) considered without and with cities having 
international airports (AP), as shown by Figs.  28 
and 29, respectively. We also examine pandemic Lor-
enz curves in context of this urbanisation (Fig. 30).

Effects of school closures across variants of concern
Figure 31 shows the effects of school closures combined 
with NPIs for three considered variants on linear scale.
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