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Country-specific determinants for COVID-19 «

case fatality rate and response strategies
from a global perspective: an interpretable
machine learning framework

Cui Zhou'?, Asa M. Wheelock?, Chutian Zhang'?”/, Jian Ma'?, Zhichao Li%, Wannian Liang'?’, Jing Gao'**®" and
Lei Xu'?

Abstract

Background There are significant geographic inequities in COVID-19 case fatality rates (CFRs), and comprehen-
sive understanding its country-level determinants in a global perspective is necessary. This study aims to quantify
the country-specific risk of COVID-19 CFR and propose tailored response strategies, including vaccination strategies,
in 156 countries.

Methods Cross-temporal and cross-country variations in COVID-19 CFR was identified using extreme gradient boost-
ing (XGBoost) including 35 factors from seven dimensions in 156 countries from 28 January, 2020 to 31 January, 2022.
SHapley Additive exPlanations (SHAP) was used to further clarify the clustering of countries by the key factors driving
CFR and the effect of concurrent risk factors for each country. Increases in vaccination rates was simulated to illustrate
the reduction of CFR in different classes of countries.

Findings Overall COVID-19 CFRs varied across countries from 28 Jan 2020 to 31 Jan 31 2022, ranging from 68 to 6373
per 100,000 population. During the COVID-19 pandemic, the determinants of CFRs first changed from health condi-
tions to universal health coverage, and then to a multifactorial mixed effect dominated by vaccination. In the Omicron
period, countries were divided into five classes according to risk determinants. Low vaccination-driven class (70 coun-
tries) mainly distributed in sub-Saharan Africa and Latin America, and include the majority of low-income countries
(95.7%) with many concurrent risk factors. Aging-driven class (26 countries) mainly distributed in high-income Euro-
pean countries. High disease burden-driven class (32 countries) mainly distributed in Asia and North America. Low
GDP-driven class (14 countries) are scattered across continents. Simulating a 5% increase in vaccination rate resulted
in CFR reductions of 31.2% and 15.0% for the low vaccination-driven class and the high disease burden-driven

class, respectively, with greater CFR reductions for countries with high overall risk (SHAP value > 0.1), but only 3.1%

for the ageing-driven class.
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Conclusions Evidence from this study suggests that geographic inequities in COVID-19 CFR is jointly determined
by key and concurrent risks, and achieving a decreasing COVID-19 CFR requires more than increasing vaccination
coverage, but rather targeted intervention strategies based on country-specific risks.

Keywords COVID-19, Global health, Strategy, Vaccination, Case fatality rate, Pandemics, XGBoost, SHAP

Introduction

The severe disease burden caused by COVID-19 will
continue to pose a challenge to global public health
systems for the foreseeable future [1-3]. As of April
2023, the pandemic has caused more than 700 million
confirmed infections and over six million deaths [4].
Vaccination programs have been widely implemented
around the world, but while the surge in cases and
deaths has been reduced to a certain extent, it is not yet
fully controlled, and inequalities in vaccine distribution
have emerged [5, 6]. Health outcomes for COVID-19,
including case fatality rate (CFR), vary widely across
countries and could be determined by country-specific
risk factors. The determinants of cross-country vari-
ation in CFRs during a COVID-19 pandemic, in the
context of multiple confounding factors, are unclear.
Meanwhile, there is as yet a lack of evaluation of the
benefits of vaccination across countries from a global
perspective, and elucidating the extent to which coun-
tries will benefit from vaccination would provide the
basis for global vaccine distribution. Therefore, under-
standing the risk features that affect COVID-19 CFRs
is critical to guide global vaccine distribution to effec-
tively reduce CFRs.

Notably, the cross-country variation in COVID-19
CER differs from previous patterns of infectious dis-
ease, with even geographically contiguous countries
exhibiting considerable difference in CFRs. Thus,
COVID-19 CFRs are widely considered to be influenced
by multidimensional factors. Previous studies have
tried to explain cross-country variation in COVID-19
CER using a variety of unidimensional factors such as
population age structure[7, 8], comorbidities [9, 10],
medical resources [11], environment [12], culture, and
so on [13]. While these studies have found some asso-
ciations, they have also ignored the important interac-
tion effects of these factors on the risk of COVID-19
death within a single country. In addition, some stud-
ies have identified complex risk factors with relevance
to a single region or time period, but their findings are
difficult to generalise due to that same geographical or
temporal specificity [14—16]. In addition, existing stud-
ies mostly used a linear approach to explain the effects
of risk factors, thereby ignoring potential non-linear
effects. Building on previous research, we recognise
that COVID-19 CFRs are regulated by complex factors

and that identifying potential risk factors from mixed
effects at the country level will provide complementary
evidence for future pandemic responses.

Fast-evolving machine learning algorithms provide bet-
ter analytical capabilities for real-world health emergen-
cies. Extreme Gradient Boosting (XGBoost) is a highly
optimised gradient boosting framework based on deci-
sion trees, where the algorithm iteratively combines the
predictions of multiple weak learners to generate more
powerful and robust models [17]. It has been widely used
in medicine, chemistry, ecology, finance and other fields.
Its diverse objective functions, ability to handle miss-
ing values, inclusion of regularisation terms, and easier
identification of non-linear effects make it suitable for
real-world health research [18]. SHapley Additive exPla-
nations (SHAP) is a well-established algorithm that pro-
vides a visual interpretation of the model results [19]. It
can quantify the global contribution of each factor in a
machine learning model, showing the direction and mag-
nitude of each factor’s effect, as well as breaking down
a prediction to show how much each factor contributes
to a predicted value. This enables both identification of
universal risk factors in a global perspective and precise
identification of each country-specific risk and its risk
intensity.

Here, our study aims to identify national heterogeneity
in risk factors for COVID-19 CFRs and quantify poten-
tial risks in 156 countries through the SHAP-interpreted
XGboost algorithm, providing better exploratory insights
into future joint interventions for the control of CFRs.

Method

Overview

The overall framework of this study is as follows. Firstly,
we described the global distribution and epidemiological
trends in CFRs, and further evaluated multidimensional
features potentially affecting the heterogeneity of CFRs,
including vaccination coverage, demographic factors,
disease burden, behavioural risk factors, environmen-
tal risk factors, health services, and trust levels. Then,
we constructed high-performance XGboost models and
applied SHAP to explain those models and identify the
important features affecting CFR across countries during
different periods of the pandemic. After that, we clari-
fied the country-specific risk factors for each country and
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their protective and risk effects on the CFR, and grouped
countries into five clusters according to key risk factors.
Finally, to evaluate the benefit of increasing vaccination
rate on future CFR, we further simulated the change in
CER following an increase of the vaccination rate in each
country.

This study complies with the Guidelines for Accurate
and Transparent Health Estimates Reporting (GATHER)
recommendations (Supplementary material 2.1).

COVID-19 CFRs

Daily confirmed infections and deaths in 156 coun-
tries over the period of 28 Jan 2020 to 31 Jan 2022 were
extracted from Our World in Data (OWID) [20]. Weekly
CFRs were calculated from the number of new deaths
and new cases per week. As there is a time-lag between
deaths and cases, determined by cross-correlation analy-
sis to be 12 days in length, we lagged the daily new deaths
by 12 days to calculate the lag-adjusted weekly CFRs; we
also removed countries for which less than 12 days of
data were available (Supplementary material 3.1).

SARS-CoV-2 lineage data

SARS-CoV-2 lineage data were obtained from an inte-
grated global SARS-CoV-2 database, the China National
Center for Bioinformation (CNCB), which includes data
from the Global Initiative on Sharing All Influenza Data
(GISAID), NCBI GenBank, National Genomics Data
Center (NGDC), National Microbiology Data Center
(NMDC), and China National GeneBank (CNGB). This
database also provides variants identified from these
sequences [21]. For each day over the study period, we
determined which variant types accounted for more
than 70% of all detected sequences globally, and we clas-
sified variants that met that standard as having a world-
wide dominance. We defined the period of a variant’s
dominance as spanning from the time when the WHO
defined it as a variant of concern (VOC) to the time when
the next VOC appeared in no more than 10% of coun-
tries. The COVID-19 pandemic was thus divided into
four periods. including the ancestral variant dominance
period (original period) from 28 January to 17 December
2020, the Alpha variant dominance period (Alpha period)
from 18 December 2020 to 6 April 2021, the Delta vari-
ant dominance period (Delta period) from 11 May to 21
November 2021, and the Omicron variant dominance
period (Omicron period) from 26 November 2021 to 31
January 2022.

Vaccination data

Daily vaccination data from January 28, 2020 to January
3, 2022 were extracted from OWID and pre-processed
by linear interpolation in 156 countries [22]. Vaccination

Page 3 of 17

status was defined according to whether the last dose had
been received within six months, since the protection
offered by the COVID-19 vaccine drops sharply after six
months [23, 24]. Vaccination rates were further organ-
ised into two categories: the proportion of the population
having completed the initial vaccination protocol within
six months (fully vaccinated) and that having received a
booster within six months (booster given).

Multi-dimensional explanatory variables

To comprehensively assess the risk factors influencing
COVID-19 CFR, we included 35 features in six dimen-
sions that are known or thought to affect CFRs (Table 1):
demographic characteristics, national disease burden,
behavioural risk factors, environmental risk factors, level
of national health services, and level of trust.

XGboost

Model building

To develop explanatory and predictive models, we
employed XGBoost algorithm to capture the non-linear
associations between COVID-19 CFRs and multiple
dimensional features. XGBoost is an ensemble machine
learning method based on decision trees that applies
a gradient boosting framework [18]. It creates a robust,
more accurate prediction model from an ensemble of
weak prediction models and incorporates a penalty term
for model complexity to improve performance. The
objective function of the XGBoost algorithm is as follows:

Obj(6) =L(0) + QO) = > LGipy) + Y Qi) fi € F
i k

where L is the training loss function. L(y;, y;) corresponds
to the training loss function for each sample, where y;
indicates the true value of the i sample and %; indicates
the estimated value of the i sample. 2 is regularization
function that measures the model’s complexity, where k
is the number of trees, F is the set of all possible regres-
sion trees.

Feature selection

We filter the main features using the Recursive Feature
Elimination (RFE) algorithm, which aims to capture CFR
variations while retaining as few features as possible. The
RFE strategy uses all the features to train the supervised
model and then evaluates the features according to their
importance in the model [25]. The detailed steps include:
(1) Initialisation: all features are used to train the super-
vised model. (2) Feature importance evaluation: based
on the importance of the features in the model, the least
important features are selected for elimination. (3) Model
update: retrain the model using the dataset with one fea-
ture removed.(4) Determine stopping condition: check
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whether the stopping condition is satisfied; if not, return
to step 2; if it is satisfied, go to the next step. (5) Feature
selection: select features from the model with better fit.
In each iteration, root mean square error (RMSE) is used
to evaluate the fit of the model. The model that performs
best in the feature elimination process is selected as the
final model. Overall, RFE finds the best subset of features
for a model by progressively eliminating unimportant
features, thereby reducing the number of the features
while maintaining the predictive power of the model.

Hyperparameter tuning

The optimal set of hyperparameter values was selected
using a ten-fold cross-validation grid search. The tuned
parameters consisted of learning rate (from 0.05 to 0.2
with an interval of 0.05) and the maximum depth of the
tree (from 4 to 10 with an interval of 1). Since our depend-
ent variable of interest was zero-inflated right-skewed
data, the objective function was set as ‘reg:tweedie. The
training process was stopped when more training cycles
failed to enhance the validation dataset’s performance.
The dataset was split into three parts: 60% for training,
20% for validation, and 20% for testing. R* and RMSE
were used to assess the model’s accuracy.

Simulation

We predicted the change in CFR under scenarios where
booster vaccination rate was increased by 5% in each
country. We used the best model parameters derived
from the training and validation dataset, and then held
all other variables constant, and changed the booster vac-
cination rate for each country to predict the CFRs. The
principle of increasing booster vaccination is based on
each country’s actual full and booster vaccination rates,
so we predicted CFRs for increasing booster vaccination
rates within the range of a country’s booster vaccina-
tion rate not exceeding the cumulative proportion of the
population fully vaccinated. This approach ensured that
our predictions remained within realistic limits, which
reflected the actual limitations of booster vaccination
coverage.

Model interpretation

We used the SHAP framework to rank features according
to their importance and explain how features affect the
CFR. SHAP is a game theoretic approach that can explain
the output of the XGBoost model. It connects the opti-
mal credit allocation with a local explanation using the
classical Shapley values from game theory and their asso-
ciated extensions [19]. The variability of the predictions
is assigned to the available features, allowing evaluation
of the contribution of each feature to each prediction
point. SHAP provides valuable insights into a model’s
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behaviour by overcoming the main drawback of incon-
sistency in classical global feature importance measures,
minimizes the possibility of underestimating the impor-
tance of a feature with a certain attribution value, shows
consistency and accuracy in its importance ordering, and
interpreting the model’s global behaviour while retain-
ing local faithfulness. The overall importance of a fea-
ture was scored as the mean absolute value of all SHAP
values for that feature, and we considered features scor-
ing 0.1 or higher as important [26-28]. The association
between CFR and each key feature was examined via par-
tial dependence plots, which were adjusted for all other
confounding variables.

Statistical analysis
Continuous data are presented as a mean with stand-
ard deviation (SD) where normally distributed and as a
median with the 25th and 75th percentiles where non-
normally distributed. We used Spearman’s rank cor-
relation to measure the correlation of CFR with each
continuous features, such as booster vaccination rate.
Differences in CFRs among four groups of countries with
different income levels were tested using analysis of vari-
ance (ANOVA), and then differences between pairs of
country groups were tested by post-hoc tests using the
Bonferroni method.

Analyses were performed in the R 4.1.1 and Python 3.8
environments.

Results

Temporal and regional heterogeneity of COVID-19 CFRs
Overall COVID-19 CFRs varied significantly across
countries, ranging from 68 per 100,000 population to
6,373 per 100,000 population. The global CER exhibited a
decreasing trend from January 2020 to January 2022, with
respective values of 2.26%, 1.95%, 1.92%, and 0.74% for
the original, Alpha, Delta, and Omicron periods (Fig. 1a,
b). During the pandemic, CFRs gradually dropped in
the high income countries after the first outbreak, while
low income countries had relatively high CFRs through
the end of the study period. Univariate analyses revealed
significant associations with CFR for some factors such
as cumulative vaccination rate, but did not satisfacto-
rily explain the differences in CFRs across countries, for
example the observation that countries with low vacci-
nation rates always exhibit higher CFRs, but so do some
countries with high vaccination rates such as Peru, Ecua-
dor, and Mexico (Supplementary material 3.3).

Changes in the determinants of COVID-19 CFRs

over the four periods of the pandemic

Most cross-country variation in CFRs in the Alpha,
Delta, and Omicron periods could be well explained by
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Fig. 1 Trends in and distributions of CFR. a Epidemiological curves of COVID-19 CFR by WHO region from 28 January 2020 to 31 January 2022. b
Global distribution of CFR in the original, Alpha, Delta, and Omicron periods

the SHAP-interpreted XGboost model (R% 0.76, 0.62, vary across periods. From the Alpha period to the Omi-
0.58, respectively), but only limited interpretation was cron period, the important determinants first changed
achieved for the original period (R* 0.33). Important from health conditions to universal health coverage, and
determinants of CFR and their number were found to

(See figure on next page.)

Fig. 2 The importance of each factor affecting CFR and its effects in the original, Alpha, Delta, and Omicron periods. a ISs for each feature affecting
CFR in each period model, obtained by taking the absolute mean of the SHAP values. The 35 features represent seven distinct dimensions:
vaccination coverage, demographic factors, disease burden, behavioural risk factors, environmental risk factors, health services, and trust levels. b
SHAP dependence plots for proportion of population aged over 65, booster vaccination rate, CVD, and GDP per capita in the XGBoost models. SHAP
values above zero represent an increased risk of higher COVID-19 CFR. Abbreviations: IS, important score; LRI, lower respiratory infections; URI, upper
respiratory infections; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular diseases; CKD, chronic kidney disease; HTN, hypertension;
MD, mental disorders; NCD, noncommunicable diseases; HIV, HIV infection; TB, tuberculosis
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then to a multifactorial mixed effect dominated by vac-
cination (Fig. 2a).

The explanatory plots for each factor affecting CFR
(Fig. 2b) indicate vaccination to have been an evident
determinant of cross-country variation in CFRs since the
Alpha period, and especially important in the Omicron
period, with fully vaccinated (importance score (IS): 0.21)
and booster given (IS: 0.37) status both showing a strong
protective effect. From the Alpha period to the Omicron
period, the protective effect of GDP on CFR gradually
increased, while the importance of the HAQ index grad-
ually decreased. In addition, ageing (IS: 0.09 and 0.11,
respectively) and disease burden (IS: 0.12-0.24) were
identified as important factors for increased CFR in the
Alpha and Omicron periods, but not in the Delta period.
A variety of disease burdens also exhibited important
impacts on CFR: chronic obstructive pulmonary disease
(COPD), cancers, and mental illness in the Alpha period,
and cardiovascular diseases (CVD) and chronic kidney
disease (CKD) in the Omicron period. Trust in govern-
ment and journalists evidenced relative importance to
the CFR over all four time periods (IS: 0.05-0.21). In addi-
tion, tree cover first appeared as a relatively important
factor in the Omicron model.

Country-specific determinants and concurrent risks

of COVID-19 CFR

The Omicron period model revealed that of the various
determinants of CFR, the main contributors (IS>0.1)
were the population receiving booster doses and full vac-
cination, GDP per capita, prevalence of chronic kidney
disease and cardiovascular disease, and the proportion
of the population aged 65 and over. We subsequently
grouped the countries into five classes based on these
risks: low vaccine coverage, ageing, high disease bur-
den, low GDP, and other (Fig. 3a). For most of the high-
income countries the main risk factor is ageing (n=26,
48.1%), in addition to 10 countries where the main risk
factor is high burden of disease (18.5%), while for most
of the low-income countries the main risk factor was low
vaccination coverage (n=22, 95.7%).

Figure 4 showed the total risk and the risk of each con-
tributor for each country respectively, with SHAP values
less than zero as the protective effect and greater than
zero as the risk effect. For countries in Class 1 (n=70),
the main determinant of CFR was low vaccination cov-
erage. This class was mainly comprised of countries in
Africa, South East Asia and Latin America. Across all
Class 1 countries only 17.1% and 0.4% of people were
fully vaccinated and booster given, respectively. The
highest risk due to low booster vaccination was in Sudan
(SHAP value: 0.40) and due to low full vaccination was in
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Niger (SHAP value: 0.48) (Fig. 4). In addition, most coun-
tries in Class 1 featured multiple concurrent risk factors:
88.6% were also at risk of low GDP, and some countries
(51.4%) such as Syria, Sudan, Afghanistan, and Iraq
were at risk of high disease burden (Fig. 3b). For coun-
tries in Class 2, the main determinant of CFR was ageing.
There are 26 countries in this class, including 23 Euro-
pean high-income countries such as Portugal, Germany,
and Finland, as well as Canada, Australia, and Uruguay.
On average, the proportion of people aged over 65 was
around 19%. Countries in Class 2 had fewer concurrent
risks; only seven countries, including Czechia, Estonia,
and Lithuania, evidenced risk of high disease burden
as a secondary determinant (Fig. 4). For countries in
Class 3 (n=32), the main determinant of CFR was high
disease burden, including a high burden of CVD and
CKD. Within the class, the average cardiovascular dis-
ease prevalence was 7915 per 100,000 and the average
chronic kidney disease prevalence was 9,548 per 100,000.
The highest risk due to CVD was in Egypt (SHAP value:
0.92), and due to CKD was in Syria (SHAP value: 0.18)
(Fig. 4). Countries in Class 3 also faced more concur-
rent risks, with 68.8% and 46.9% being at risk of low GDP
and ageing, respectively (Fig. 3b). For countries in Class
4 (n=14), the main determinant of CFR was low GDP.
This class of countries were scattered globally and char-
acterized by fewer concurrent risks. Finally, for countries
in Class 5, the main determinants of CFR comprised
other factors of lesser global importance such as health
expenditure, trust in journalists, and dietary risks.

Future benefits of a 5% increase in vaccination vary

by country

When simulating a 5% increase in vaccination, countries
showed differing degrees of reduction in CFR (Fig. 5a).
For countries in Class 1 and Class 3, where low vaccina-
tion rates and high disease burden constitute the main
risk factors (Fig. 5b), increasing vaccination produced
a greater change in CFR, with median values of 31.2%
and 15.0%, respectively. Although most Class 1 coun-
tries had a significant reduction in CFRs after model-
ling increased vaccination rates, there were still some
countries where the reduction in CFR was not signifi-
cant (change rate<0.1), e.g. Burundi, due to their lower
overall risk (median SHAP value for overall risk: —0.79)
compared to other countries (median SHAP value for
overall risk: 0.19). Conversely, continued increases in vac-
cination were of limited benefit in ageing countries (Class
2) where vaccination rates were already high, achieving a
median change of 3.1%, and also in the low GDP-driven
Class 4, for which the median change was 4.8%.
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Discussion

We draw three conclusions from this study. First, across
the different variant dominance periods of the pandemic,
the important determinants of COVID-19 CFRs changed
from health conditions to universal health coverage, and
then to a multifactorial mixed effect dominated by vac-
cination. This different weighting of factors may be due to
the distinct characteristics of the respectively dominant
SARS-CoV-2 strains. The higher transmissibility of the
Delta variant compared to the Alpha variant may lead to
its easy transmission even in healthy populations rather
than a greater susceptibility in individuals with underly-
ing disease [29]. Thus, changes in the infected population

during the Delta variant period may reduce the impact of
disease burden on CFR. Moreover, Delta variants result
in a significant increase in the risk of hospitalisation and
death in infected individuals, placing a greater burden on
the healthcare system [30, 31]. Our analyses suggest that
the level of the national health service is a key predictor
of CFR during this period, replacing the effects of the
disease burden. Adjusting investments to improve access
and quality across healthcare needs will not only benefit
routine care, but also improve overall health coverage in
preparation for the next pandemic [32]. Furthermore,
social determinants and public health interventions also
affect the association between the disease burden and
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Fig.4 Overall risk and contributions of main risk factors to the CFR for each country in Classes 1-4. Country abbreviations use the ISO 3166 ALPHA-3

codes [44]
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the CFR. Vulnerable population, such as the elderly and
those with underlying diseases, are prioritised for vacci-
nation, they have reduced CFR, which may also result in
a reduction in the impact of the disease burden on the
country’s CFR [33]. Meanwhile, the COVID-19 pandemic
took on a new pattern as a result of the emergence of the
Omicron variant [34]. The immune escape character-
istics of Omicron make it more contagious than earlier
strains, but it also seems to be gentler, typically result-
ing in less severe disease [35]. In addition to the charac-
teristics of the virus itself, patients during the Omicron
period also benefited from the strong protection against
severe disease and death still afforded by the COVID-19
vaccine [36]. Our study thus confirms the importance
of vaccination, especially booster doses, in reducing the
risk of death in Omicron pandemics. Especially in this
present stage dominated by the "Stealth’ Omicron, BA.2,

during which strict prevention policies are challenged
by insidious transmission and the number of infections
has become difficult to control, improving vaccination
coverage is a cost-effective approach for reducing severe
health outcomes and relieving pressure on the healthcare
system.

The second major conclusion of this study is that dif-
ferences in CFRs between countries are driven by effects
of country-specific risk factors. Our findings highlight
the noteworthy risk factors of COVID-19 death for each
country at the current stage, with the most important
risks being low vaccination, ageing, high disease burden,
and low GDP. Based on the leading risks, we further cat-
egorized countries into four classes. Grouping countries
in this way will provide joint intervention strategies for
real-world policymakers and also help further a coordi-
nated response to the pandemic that balances global and
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national benefits. Notably, ageing as a major risk factor
was mainly found in high-income developed countries,
where vaccination rates are already high and CFRs rela-
tively low; accordingly, in addition to sustaining vaccina-
tion rates, policies in the post-COVID era may need to
prioritise vulnerable populations such as older people.
Similarly, countries with a high disease burden as the
main risk, including some like Egypt, Madagascar, and
Jordan where vaccine supply is relatively limited, would
be better served by adjusting vaccine priority distribu-
tion programmes to protect the large number of vulner-
able people with underlying diseases. It is also important
to provide health education to these populations to
enable them to accept vaccines. In another considera-
tion, although the protective effect of vaccines has been
widely demonstrated, our results suggest that in coun-
tries where low vaccination is a major risk factor, CFRs
are also affected by a broad range of concurrent risks;
consequently, we believe that a joint intervention would
be an effective measure for reducing CFRs in this class of
countries. In the short term, in addition to vaccination,
a promising area for interventionists to work on is rais-
ing the level of national trust. Our findings support pre-
vious research that trust in government and science can
increase risk perceptions of COVID-19 among the popu-
lation, promote cooperation with outbreak prevention
and control efforts, and more quickly control the number
of cases and deaths [37]. Pandemics have always posed
a challenge to trust between the public and the govern-
ment, and maintaining and rebuilding trust during a cri-
sis is crucial to maintaining political participation and
social cohesion [38]. In the long term, behavioural factors
such as smoking, obesity, diet, and nutrition, along with
environmental factors such as tree cover and PM2.5, are
all risk factors that can be changed through health edu-
cation and policy development, and are areas in which
advance preparation is needed in order to mitigate the
effects of future epidemics. Regulating taxes on tobacco,
tightening restrictions on smoking places, and setting a
legal age for smoking would contribute to reducing the
potential harm from smoking at a national level. Obesity
and malnutrition are long-standing health challenges and
risk factors for a range of chronic diseases, the dangers
of which are already well known. However, governments
also need to guide people towards healthy eating habits
through policies such as requiring calorie labelling on
foods and restricting the promotion of high-sugar and
high-fat foods. In addition, environmental factors are of
increasing concern to epidemiologists, and our research
suggests that tree cover and PM, ; have some impact on
severe health outcomes in COVID-19. It has also been
suggested that PM,; may potentially serve as a carrier
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for the virus [39]. Therefore, an improved environment
with less air pollution would benefit both patients with
COVID-19 and healthy populations.

The third major conclusion of this study is that the
health benefits of continued vaccination vary between
countries having different driving factors for death.
On the issue of vaccine allocation, as advocated by Jer-
emy Bentham’s Utilitarianism, a rule for society should
be established that has the best outcome for the great-
est amount of people in society, in the sense that a cost-
effective vaccine allocation scheme should be developed
in a global perspective that reduces the risk of death for
the greatest proportion of people worldwide. The WHO
has worked to this end by convening COVAX [40], a
ground-breaking global collaboration aimed at acceler-
ating the development and production of and equitable
access to the COVID-19 vaccine, ensuring that every
country has access to the vaccine and is able to promote
vaccination to protect their whole population, starting
with the most vulnerable. Progress on this project has not
been smooth, with most early supplies of vaccine having
been promptly purchased by wealthy countries and the
supply shortages further exacerbated by vaccine nation-
alism, hoarding, and export bans. Even though COVAX
has delivered more than 1.4 billion doses of vaccine to
142 countries, and 65.2% of the world’s population has
received at least one dose, only a cumulative 15.3% of
people in low-income countries are included in that frac-
tion [41]. This is insufficient to reach vulnerable popula-
tions such as health workers, the elderly, and people with
chronic diseases. In times of inadequate vaccine supply,
our model allows for real-time assessment of the risk of
COVID-19 death in countries in need and of the health
benefits of vaccination so as to guide vaccine allocation
more rationally.

Our ecological studies based on country-level data
provide a global perspective on the risk assessment of
COVID-19 CER. Country-level studies provide a more
comprehensive understanding of the consistent impacts
of risk factors across countries worlwide than more
granular studies. We draw more generalisable conclu-
sions at larger geographical scales, and identify key risk
factors that are specific to each country, complementing
the more granular studies within countries that together
support policy decisions. Meanwhile, our studies provide
insights into the allocation of health resources, such as
vaccines, in a global perspective. Population-based and
individual-based studies focus on different dimensions
and issues that complement each other and contribute
to a comprehensive understanding of disease develop-
ment and control. For example, while there are a large
number of individual-level studies across time periods
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that show that underlying disease is always a good pre-
dictor of death in patients with COVID-19 [42], consist-
ent with the findings of other country-level studies that
risk factors differ in importance across time periods for
the national CFR, with the burden of disease from the
underlying disease becoming less important during the
Delta period [43]. This variation in risk factors between
time periods supports policymakers in considering dif-
ferent intervention strategies at different times. While
individual-level studies provide insights into direct health
impacts, country-level studies better explain differences
in disease outcomes between countries, providing a
broader view of how macro-factors, such as healthcare
policies and economic conditions, impact public health
outcomes.

There are several limitations in our analysis. First, the
study design is a country-level ecological analysis based
on retrospective data, and care should be taken regard-
ing ecological fallacies in the interpretation and gener-
alisation of the results. Our findings do not explain CFR
differences within countries, and targeted COVID-19
intervention strategies within countries may need to
be supported by more fine-grained data. Second, our
data were sourced from multiple publicly available data
sources, and after comparing them we selected the more
credible sources and also applied outlier treatment, but
the credibility of our analysis relies greatly on the quality
of the data. Third, COVID-19 cases and deaths are from
national self-reported data and do not consider excess
deaths from COVID-19. Fourth, we considered as many
country-level COVID-19-related factors as possible, but
due to data limitations, we were unable to adjust for dif-
ferences in vaccine type and ethnicity. Fifth, the original
period model has a low R? value and does not capture the
variation in CER well. As the model can only explain the
features we included, there may be some unknown fea-
tures that we have not been able to identify.

The cross-temporal and cross-country variation in
COVID-19 CFRs illustrates the importance of conduct-
ing further research on risk assessment. Our explora-
tory study reminds policy makers to consider risk factors
holistically and assess whether their countries can rebuild
policy trust, face the challenges of vaccine hesitancy,
revitalize primary healthcare, and strengthen behav-
ioural and environmental risk management and invest-
ment in the post-COVID era. At present, consideration
of COVID-19 as an endemic disease has also entered the
plans of some countries; that is, SARS-CoV-2 will not
be eradicated and is instead expected to persist in a less
lethal pattern, placing greater demands on healthcare
systems and cyclical vaccination.
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Conclusions

Evidence from this study suggests that cross-temporal
and cross-country variation in COVID-19 CER is jointly
determined by key and concurrent risks. Across the dif-
ferent variant dominance periods of the pandemic, the
important determinants of COVID-19 CFRs changed
from health conditions to universal health coverage,
and then to a multifactorial mixed effect dominated by
vaccination. We quantified the country-specific risk of
COVID-19 CER for 156 countries along seven dimen-
sions: vaccination coverage, demographic factors, dis-
ease burden, behavioural risk factors, environmental risk
factors, health services, and trust levels, and clarify the
extent to which countries will benefit from increased
vaccination. The findings suggested that achieving a
decreasing COVID-19 case fatality rate requires more
than increasing vaccination coverage, but rather targeted
intervention strategies based on country-specific risks.
In countries where low vaccination coverage is a major
risk factor for COVID-19 deaths, increased vaccination
is more effective in reducing CFR, especially in countries
with high overall risk. In countries where high disease
burden and ageing are major risk factors for COVID-19
deaths, it is important to focus on protection of vulner-
able populations in the short term, and on interventions
targeting age structure and population health status in
the long term. Some risk factors that influence CFRs,
such as GDP, cannot be controlled by policymakers or
changed in the short term, underlining the importance
of global public health efforts to strengthen cross-border
cooperation to mitigate inequities.
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COVID-19 Coronavirus disease 2019
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
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