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Abstract
Background Regional variations in SARS-CoV-2 infection were observed in Canada and other countries. Studies have 
used multilevel analyses to examine how a context, such as a neighbourhood, can affect the SARS-CoV-2 infection 
rates of the people within it. However, few multilevel studies have quantified the magnitude of the general contextual 
effect (GCE) in SARS-CoV-2 infection rates and assessed how it may be associated with individual- and area-level 
characteristics. To address this gap, we will illustrate the application of the median rate ratio (MRR) in a multilevel 
Poisson analysis for quantifying the GCE in SARS-CoV-2 infection rates in Ontario, Canada.

Methods We conducted a population-based, two-level multilevel observational study where individuals were 
nested into regions (i.e., forward sortation areas [FSAs]). The study population included community-dwelling adults 
in Ontario, Canada, between March 1, 2020, and May 1, 2021. The model included seven individual-level variables 
(age, sex, asthma, diabetes, hypertension, congestive heart failure, and chronic obstructive pulmonary disease) and 
four FSA census-based variables (household size, household income, employment, and driving to work). The MRR is 
a median value of the rate ratios comparing two patients with identical characteristics randomly selected from two 
different regions ordered by rate. We examined the attenuation of the MRR after including individual-level and FSA 
census-based variables to assess their role in explaining the variation in rates between regions.

Results Of the 11 789 128 Ontario adult community-dwelling residents, 343 787 had at least one SARS-CoV-2 
infection during the study period. After adjusting for individual-level and FSA census-based variables, the MRR 
was attenuated to 1.67 (39% reduction from unadjusted MRR). The strongest FSA census-based associations were 
household size (RR = 1.88, 95% CI: 1.71–1.97) and driving to work (RR = 0.68, 95% CI: 0.65–0.71).

Conclusions The individual- and area-level characteristics in our study accounted for approximately 40% of the 
between-region variation in SARS-CoV-2 infection rates measured by MRR in Ontario, Canada. These findings suggest 
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Background
The coronavirus disease 2019 (COVID-19) pandemic 
in Canada and other countries was marked by regional 
variations in severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection [1–3]. An extensive 
evidence base has reported socioeconomic inequalities 
over time in SARS-CoV-2 infection [4]. Socioeconomic 
inequalities in SARS-CoV-2 infection have also been 
reported between regions; that is, regions with the high-
est infection rates often coincided with a high proportion 
of socially disadvantaged population groups [5–9]. The 
extent to which the heterogeneity of SARS-CoV-2 infec-
tion between regions is associated with individual-level 
factors (e.g., age, sex, income, employment) and area-
level factors (e.g., population density) is challenging to 
parse. For instance, a systematic review focused on socio-
economic inequalities in SARS-CoV-2 infection reported 
that people living in areas with high population density 
were more likely to come into close contact with oth-
ers and have a higher risk of SARS-CoV-2 infection [10]. 
Measuring how individual- and area-level factors may 
explain heterogeneity in SARS-CoV-2 infection requires 
relevant multilevel data and the application of multilevel 
methods while considering potential sources of biases in 
the multilevel study design [11–13].

Key features of multilevel analyses are the ability to 
model the relationship, measure heterogeneity, and par-
tition variance between individual-level factors and 
area-level factors on individual outcomes [14, 15]. These 
methods are conceptually consistent with our current 
understanding that the risk of SARS-CoV-2 infection is 
influenced by the socioecological contexts (e.g., home, 
workplace, neighbourhood) in which people live. In the 
multilevel analysis literature, the general contextual effect 
(GCE) describes how an individual’s context influences 
the individual outcomes [16]. Studies have used multi-
level analyses to examine how a context, such as a neigh-
bourhood, can affect the SARS-CoV-2 infection rates of 
the people within it [17–19]. However, few multilevel 
studies have quantified the magnitude of the GCE in 
SARS-CoV-2 infection rates and assessed how it may be 
associated with individual- and area-level characteristics 
[20, 21].

The median rate ratio (MRR) is a summary measure 
that quantifies the magnitude of GCE in multilevel Pois-
son regression [22]. There are also similar measures for 
different multilevel analyses. The median odds ratio 
(MOR) is used in multilevel logistic regression [22], and 

the median hazard ratio is used in multilevel survival 
analyses [23]. The MRR is the median value of the rate 
ratio comparing two patients with identical measured 
characteristics randomly selected from two different 
areas, where the higher rate is the numerator, and the 
lower rate is the denominator. If we were to compute the 
rate ratios across all possible randomly selected pairs of 
individuals with identical measured characteristics from 
different areas, we would produce a distribution of rate 
ratios that are always greater or equal to 1. The MRR is 
the median of this distribution of rate ratios. The smallest 
possible value of the MRR is 1, which means there is no 
heterogeneity in the outcome between geographic areas. 
MMR values greater than 1 indicate heterogeneity in the 
outcome between geographic areas. The attenuation of 
the MRR after including individual- and area-level char-
acteristics can identify potential characteristics associ-
ated with the variation between geographic areas.

In this paper, we will illustrate the application of the 
MRR in a multilevel Poisson regression to quantify the 
magnitude of GCE in SARS-CoV-2 infection using data 
from Ontario, Canada. Second, we assess how the het-
erogeneity in SARS-CoV-2 infection between areas mea-
sured by the MRR is associated with individual- and 
area-level characteristics. Finally, we aim to inform inves-
tigators about the potential opportunities and challenges 
in applying the MRR (and similar measures) in future 
multilevel studies in population health research.

Methods
Study design, setting, and population
We conducted a population-based, multilevel obser-
vational study using census, laboratory, and health 
administrative data. The study population included 
community-dwelling adults in Ontario, Canada. Ontario 
residents are covered by a universal, publicly funded 
health care plan. Ontario had substantial geographic 
variation in SARS-CoV-2 infection rates [6]. The study 
period included SARS-CoV-2 infections from March 
1, 2020, to May 1, 2021. This study period encompasses 
Ontario’s first to third COVID-19 waves before the gen-
eral adult population was eligible for COVID-19 vac-
cination [24]. Our multilevel study included two levels: 
individuals nested into areas. The area level was the cen-
sus geographic unit of the forward sortation area (FSA), 
representing the first three characters of the six-character 
Canadian postal code [25].

that population-based policies to address social determinants of health that attenuate the MRR may reduce the 
observed between-region heterogeneity in SARS-CoV-2 infection rates.

Keywords COVID-19, SARS-CoV-2, Multilevel analysis, Social determinants of health, General contextual effect, 
Median rate ratio, Poisson regression, Heterogeneity
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Data sources, linkages, and inclusion criteria
We captured laboratory-identified SARS-CoV-2 infec-
tions using Ontario Laboratories Information System 
(OLIS) data and linked this information to relevant 
health administrative and census data. These datasets 
were linked using unique encoded identifiers and ana-
lyzed at ICES (formerly the Institute for Clinical Evalu-
ative Sciences) [26]. The OLIS captured approximately 
90% of all laboratory-identified SARS-CoV-2 infections 
reported in Ontario [6].

We obtained individual-level data from the Regis-
tered Persons database, the Ontario Health Insurance 
Program, the Canadian Institute for Health Information 
Discharge Abstract Database, the National Ambulatory 
Care Reporting System, the Continuing Care Report-
ing System, and the Ontario Drug Benefit claims data-
base. We used validated algorithms to identify chronic 
disease conditions in the administrative data [27–31]. 
We obtained area-level information at the FSA using 
the 2016 Canadian Census data linked using the Postal 
Code Conversion File (PCCF + 2016, Version 7B) [32]. 
The 2016 Canadian census area profiles contain 513 FSAs 
for Ontario, with a median population of 22,260 [33]. 
The 2016 census FSAs for Ontario were mapped in Addi-
tional file 1: Figure S1.

If a person had more than one positive SARS-CoV-2 
test during the study period, only the first positive 
test result was used. The SARS-CoV-2 infection cases 
included Ontario adults, 20 to 114 years old, with a lab-
oratory-confirmed SARS-CoV-2 infection who were alive 
at the start of the study period. Individuals were excluded 
if they were missing age and postal code information, 
were not eligible for Ontario Health Insurance, or were 
residing in a long-term care facility in the 90 days before 
March 1, 2020. The Ontario population used as the off-
set variable for rates in this study included Ontario adults 
from the Ontario register data, age 20 to 114 years old, 
alive at the start of the study period. Individuals were 
excluded if they were missing postal code information, 
were not eligible for Ontario Health Insurance, or were 
residing in a long-term care facility in the 90 days before 
March 1, 2020.

Measures
For the study outcome, we investigated test-positive 
SARS-CoV-2 infection rates per 1000 people during the 
study period [34]. The study outcome is interpreted as a 
rate because we included the Ontario population as an 
offset (or exposure) variable for unequal exposure in the 
population size at risk [22].

We selected individual-level variables previously 
shown to be associated with SARS-CoV-2 test positiv-
ity in Ontario [6]. The individual-level variables included 
age (20–34, 35–49, 50–64, 65–114), sex (male, female), 

history of asthma (yes, no), history of diabetes (yes, no), 
history of hypertension (yes, no), history of conges-
tive heart failure (CHF) (yes, no), and history of chronic 
obstructive pulmonary disease (COPD) (yes, no). Several 
area-level characteristics have established associations 
with geographic variation in SARS-CoV-2 rates [35–37]. 
We first created a comprehensive list of potential census 
variables for study inclusion using eight broad domains: 
age, ethnicity, family characteristics, immigration, 
income, labour, language, and education. Because census 
variables are often strongly correlated [38], we used the 
SAS VARCLUS procedure to conduct a hierarchical clus-
ter analysis of the census variables to inform FSA census-
based variable selection and reduce multicollinearity 
[39]. The FSA census-based variables included were 
household size, median after-tax household income, the 
proportion of employed people in sales/service jobs, and 
the proportion of people who primarily drive to work. 
Further details about the definitions of each census vari-
able used in the study are included in Additional file 1: 
Table S1. To aid comparison between the area-level vari-
ables and to further reduce potential multicollinearity in 
our study, the area-level covariates were standardized to 
have a mean of zero and a standard deviation of 1.

Statistical analyses
Before fitting these regression models, we aggregated the 
person-level data by summing the number of test-posi-
tive SARS-CoV-2 infections and the number of people in 
the Ontario population at risk separately across the dif-
ferent covariate combinations of individual and area-level 
variables. This meant that each row of the aggregated 
data represented all the cases and the Ontario population 
who shared the same individual-level and area-level char-
acteristics. Aggregating the data increases the computa-
tional efficiency of the statistical analysis when the data is 
large. We include a schematic diagram of the aggregated 
data structure in the Additional file 1: Figure S2. Due to 
rate instability concerns, we excluded rows with a popu-
lation size of less than 20 people. We also excluded rows 
with missing census variables.

Because of the hierarchical structure of study data 
(with individuals nested within FSAs) and the outcome 
was a rate (i.e., the rate of test-positive SARS-CoV-2 
infection per 1000 people), we applied multilevel Pois-
son regression with FSA-specific random intercepts 
[22]. We adopted a sequential modelling strategy [14]. 
Model I was the null model. We analyzed the quanti-
fied variation in the rate of SARS-CoV-2 infection before 
accounting for any individual or area variables. In model 
II, we included the seven individual-level variables. We 
expanded model II by including the four area-level vari-
ables in model III. We calculated the proportional change 
in the FSA variance in models II and III to assess how 
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adding individual- and area-level characteristics accounts 
for some of the FSA variance in the null model [40] We 
also evaluated how individual and area-level covariates 
might account for GCE measured by MRR, by adapting 
the formula for the percentage excess risk explained to 
measure the attenuation of the MRR after including each 
set of variables [41, 42]: (MRRU – MRRA) / (MRRA – 1) 
* 100. The MRRU represents the unadjusted MRR from 
the null model as the reference, and the MRRA represents 
the MRR from each subsequent model in the sequential 
model-building strategy.

We conducted additional analyses to ensure adequate 
model fit and robustness of the results. We graphically 
assessed the linearity assumption between the continu-
ous FSA census-based variables and the outcome using 
restricted cubic splines. Model fit statistics were pro-
duced for each model using the deviance, Akaike’s infor-
mation criterion (AIC), and the Bayesian information 
criterion (BIC). A key distributional assumption of the 
Poisson regression model is equidispersion; the response 
variable’s variance equals the mean [43]. When the Pois-
son regression model is extradispersed, the variance in 
the response variable is smaller than the mean (under-
dispersed), or the variance in the response variable is 

larger than the mean (overdispersion). Overdispersion 
is especially concerning because it underestimates the 
standard errors. All models were assessed for equidisper-
sion by examining whether the dispersion statistic was 
approximately 1. We also conducted sensitivity analyses 
to determine the robustness of results to changes in the 
study period (i.e., COVID-19 waves) and geographic unit 
of analysis. We used SAS Enterprise Guide v.8.15 (SAS 
Institute Inc, Cary, NC) for all analyses. The SAS GLIM-
MIX procedure was used to estimate the multilevel Pois-
son regression models [44].

Results
Descriptive statistics
The study flowchart for the cases is shown in Fig.  1, 
and the study flowchart for the Ontario population 
counts used as the offset is shown in the Additional file 
1: Table S2. The cases included a total of 343 787 indi-
viduals (median age, 44 years, [interquartile range {IQR}, 
30–57; range, 20–107 years]; 51% female) with a SARS-
CoV-2 infection between March 1, 2020, and May 1, 
2021. Table 1 shows the distribution of the study cohort’s 
demographic, chronic health conditions, and census-
based area-level characteristics. Hypertension (22%) 

Fig. 1 SARS-CoV-2 infection cases flow diagram Abbreviation COVID-19: coronavirus disease 2019; OLIS: Ontario Laboratories Information System
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and asthma (15%) were the most prevalent chronic con-
ditions. The Ontario population included 11 789 128 
individuals (median age, 49 years, [IQR 34–63; range, 
20–114]; 51% female). Except for the oldest age category, 
the summary distribution of the demographic, chronic 
conditions, and area-level characteristics in the Ontario 
population are similar to those who tested positive for 
SARS-CoV-2. After additional exclusion after data aggre-
gation for rows with population sizes less than 20 and 
missing FSA census-based variables, the analytic study 
cohort used in the subsequent regression analyses had 
342 779 SARS-CoV-2 cases, and the Ontario population 
size used as the offset was 11 762 208.

Multilevel regression analyses
Table  2 shows the estimated incidence rate ratios and 
95% confidence intervals from the three multilevel Pois-
son regression models that were sequentially adjusted 
using demographic characteristics, chronic conditions, 
and area-level characteristics. In the null multilevel Pois-
son regression model (model I), the MRR was 2.1 per 

1000 people. This means that, on average, the rate of 
SARS-CoV-2 infection is 110% higher in one FSA com-
pared to another randomly selected FSA. The MRR from 
the null model represents how much heterogeneity in the 
outcome is attributed to the difference between clusters 
before including additional variables.

After adjusting for the individual-level characteristics 
(i.e., age, sex, and chronic conditions) (model II), the 
MRR was attenuated to 2.07 per 1000 people (MRR atten-
uated by 3%). This means that, on average, the rate of 
SARS-CoV-2 infection is 107% higher between two ran-
domly selected individuals with the same individual-level 
characteristics from two randomly selected FSA ordered 
by rates. The small attenuation of the MRR also coincided 
with a small 4.97% proportional change in the variance 
of the FSA random effect. This suggests that the individ-
ual-level variables in the model accounted for little of the 
between-FSA heterogeneity – the FSA contextual effect – 
in the rates of SARS-CoV-2. While adjusting for the other 
variables (i.e., individual binary or categorical values set 
to the reference level, and random effect being set to the 

Table 1 Baseline characteristics of individuals with a SARS-CoV-2 infection and the Ontario population
No. (%)
Tested positive for SARS-CoV-2 
(numerator)

Ontario 
Population 
(denominator)

Demographic
Total No. 343 787 11 789 128
Individual-level variables
Age (y), median (IQR) [range] 44 (30–57) [20–107] 49 (34–63) 

[20–114]
Age, y
20–34 114 497 (33) 3 039 354 (26)
35–49 95 398 (28) 3 023 852 (26)
50–64 88 343 (26) 3 144 045 (27)
65–114 45 549 (13) 2 581 877 (22)
Sex, n (%)
Female 174 037 (51) 6 014 961 (51)
Male 169 750 (49) 5 774 167 (49)
Chronic conditions, n (%)
Diabetes 45 372 (13) 1 385 101 (12)
Hypertension 75 503 (22) 2 953 037 (25)
COPD 16 905 (5) 861 869 (7)
CHF 5788 (2) 226 328 (2)
Asthma 51 566 (15) 1 704 005 (14)
FSA census-based variables
Average household size (n), median (IQR) 2.7 (2.5–3.1) 2.6 (2.2–3.1)
Proportion of employed people driving to work (%), median (IQR) 0.73 (0.58–0.80) 0.77 (0.63–0.86)
Proportion of employed people in sales/service jobs (%), median (IQR) 0.24 (0.22–0.27) 0.23 (0.19–0.28)
Median Household After-tax Income in 2015 (CAD $), median (IQR) 29 373 (24 944 − 33 186) 31 616 (26 

240 − 37 120)
Abbreviations COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure; CAD, Canadian; y, year; n, number

Note: More details about the definitions of the FSA census-based characteristics are provided in the Additional file: Table S1

The observation period is between March 1, 2020, to May 1, 2021
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same FSA) [45], an age gradient was observed from the 
youngest to oldest age group, where young adults had a 
higher incidence rate of SARS-CoV-2 infection per 1000 
people compared to the oldest adult group. In addition, 
after adjustment for the other covariates, individuals with 
diabetes and congestive heart failure had a 20% and 30% 
higher incidence rate of SARS-CoV-2 infection per 1000 
people compared to people who did not have these con-
ditions, respectively.

After adjusting for both individual- and FSA census-
based characteristics (model III), the MRR was attenu-
ated to 1.67 per 1000 people (MRR attenuated by 39% 
from the null MRR). This means that, on average, the rate 
of SARS-CoV-2 infection is 67% higher between two ran-
domly selected individuals with the same individual-level 
and FSA census-based characteristics from two randomly 
selected FSA ordered by rates. The large attenuation 

of the MRR also coincided with a large 52.46% propor-
tional change in the variance of the FSA random effect. 
This suggests that individual-level and FSA census-based 
characteristics in the model accounted for a sizeable por-
tion of the between-FSA heterogeneity – the FSA contex-
tual effect – in the rates of SARS-CoV-2. After adjusting 
for the individual-level and FSA census-based character-
istics, the results suggest that the incidence rate of SARS-
CoV-2 infection per 1000 people in an FSA increased by 
83% for each 1 unit increase in the standard deviation 
from the mean household size. In addition, after adjust-
ing for the other covariates, the results suggest that the 
incidence rate of SARS-CoV-2 infection per 1000 people 
in an FSA decreased by 32% for each 1 unit increase in 
the standard deviation from the mean proportion of the 
labour force that primarily drives to work. After adjust-
ing for both individual- and area-level characteristics, 

Table 2 Sequential multilevel Poisson regression models for individuals with a SARS-CoV-2 infection in Ontario
Distinct Areas (i.e., FSA) = 513
Individuals (Numerator) = 342 729
Population (Denominator) = 11 762 208

Model I (Null model) Model II
(Model I + age, sex, and chronic 
conditions)

Model III
(Model II + cen-
sus-based area 
measures)

Intercept 2.97 2.39 2.86
Individual Level RR (95% CI) RR (95% CI) RR (95% CI)
Age, yr
 20–34 2.24 (2.18–2.31) 2.24 (2.18–2.31)
 35–49 1.84 (1.79–1.89) 1.84 (1.79–1.89)
 50–64 1.65 (1.62–1.68) 1.65 (1.62–1.68)
 65–114 1.00 1.00
Sex (ref. male) 1.00 (0.99–1.01) 1.00 (0.99–1.01)
Diabetes 1.29 (1.27–1.32) 1.29 (1.27–1.32)
Hypertension 1.09 (1.08–1.10) 1.09 (1.08–1.10)
COPD 0.94 (0.92–0.96) 0.94 (0.92–0.96)
CHF 1.20 (1.16–1.24) 1.20 (1.16–1.24)
Asthma 1.03 (1.01–1.05) 1.03 (1.01–1.05)
FSA census-based variables RR (95% CI) RR (95% CI) RR (95% CI)
Household size 1.83 (1.71–1.97)
Proportion of people driving to work 0.68 (0.65–0.71)
Proportion of people in sales / service Jobs 1.13 (1.06–1.21)
Median after-tax income in 2015 0.96 (0.89–1.02)
Level 2 (FSA) Variance of Random Effect 0.61 0.58 0.29
Proportional change in variance (PCV) by the new model (%) Reference 4.92 52.46
Median Rate Ratio 2.1 2.07 1.67
Median Rate Ratio attenuation (%) Reference 2.73 39.09
Model Fit Statistics
Deviance (-2 Log Likelihood) 178298.7 159760.8 159427.7
Dispersion (Pearson Chi-Square / DF) 1.27 1.04 1.04
AIC 178302.7 159782.8 159457.7
BIC 178311.1 159829.4 159521.3
Abbreviation FSA, forward sortation area; RR, incidence rate ratio; CI, confidence interval; yr, year; ref., reference; COPD, chronic obstructive pulmonary disease; CHF, 
congestive heart failure; DF, degrees of freedom; AIC, Akaike information criterion; BIC, Bayesian information criterion

Note The area was defined according to forward sortation areas (FSA). In Canada, the FSA is a geographic region based on the first three characters of the six character 
Canadian postal code. The FSA census-based variables were standardized to a mean of 0 and a standard deviation of 1. The patients in this study had a SARS-CoV-2 
infection in Ontario, Canada between March 1, 2020, and May 1, 2021. The reported intercepts are not exponentiated. The incidence rate ratio for test positive SARS-
CoV-2 infection is per 1000 people
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the magnitude of the individual-level rate ratios was not 
altered by including the area-level characteristics.

Because the MRR is on the ratio scale, it allows for 
comparing its magnitude with the association between 
the explanatory variables in the study and the outcome. 
In model III, the MRR was 1.67 per 1000 people, and the 
reciprocal of the MRR (i.e., 1/1.67) was 0.60 per 1000 
people. In examining the rate ratios (excluding categori-
cal age), 0 of the 6 individual-level characteristics had a 
rate ratio that exceeded the MRR interval (0.60,1.67), 
and 1 of the 4 FSA census-based variables had one that 
lay outside of the MRR interval. Household size had a 
rate ratio of 1.83 per 1000 (95% CI: 1.71–1.97), which 
exceeded 1.67. The magnitude of the FSA contextual 
effect (or clustering in an FSA) was larger than 9 out of 
10 binary individual-level and continuous FSA census-
based variables included in the study. This indicates that 
between-FSA variation on SARS-CoV-2 infection rates 
appears greater than the effect of the explanatory vari-
ables in the study.

The null model had a dispersion statistic of 1.27, which 
suggests the Poisson model was overdispersed. How-
ever, this is likely apparent overdispersion due to miss-
ing explanatory variables rather than real overdispersion, 
given that the subsequent models had a dispersion sta-
tistic close to 1 [46]. Therefore, the Poisson regression 
model fits the data well. The results of the graphical 
assessment of the linearity assumption are included in 
Additional file 1: Figure S3. Across each continuous FSA 
census-based variable and the predicted rate of the out-
come in the fully adjusted model, the lines are close to 
linear, except at the 95% tail for the proportion of people 
driving to work. Therefore, the linearity assumption is 
reasonable for these variables in our study. The additional 
model fit statistics – deviance, AIC and BIC– repre-
sent how well each model fits the data [47]; lower values 
indicate better model fit. Model III had the best model 
fit across all three models. There were large decreases 
in the model fit statistics between model I to model II, 
but modest decreases in the fit statistics between model 
II and model III. Although including the FSA census-
based variables did not substantially alter the model fit, 
it did account for a large proportion of the unexplained 
variance in the outcome between the FSAs based on the 
proportional change in the variance and the attenuated 
MRR. Furthermore, the results were robust regarding 
changes in the study period and geographic unit of analy-
sis, as shown in Additional file 1: Tables S3-S6.

Discussion
We conducted a multilevel analysis to illustrate the utility 
of the MRR as a summary measure to quantify the mag-
nitude of the GCE in SARS-CoV-2 infection and whether 
it could be explained by individual- and area-level 

characteristics in our study. In the fully adjusted model, 
the MRR was attenuated by approximately 40% from 2.1 
in the null model to 1.67 per 1000. This means the rate 
of SARS-CoV-2 infection is 67% higher between two ran-
domly selected individuals with the same individual-level 
and FSA census-based characteristics from two randomly 
selected FSA ordered by rates. However, a large FSA 
contextual effect still exists in the rate of SARS-CoV-2 
infection even after accounting for the individual-level 
and FSA census-based variables in the study. The fully 
adjusted MRR of 1.67 was still larger than 9 out of the ten 
binary individual-level and continuous FSA census-based 
variables included in the study. In a prior study examining 
disparities in COVID-19 mortality, the authors described 
their attenuated MRR of 1.7 as a “fairly large contextual 
effect” [48]. This suggests that other factors not included 
in our study may explain even more of the between-FSA 
heterogeneity in the rates of SARS-CoV-2 infection. 
For example, our analysis did not include environmen-
tal measures (e.g., ambient air pollution) that have been 
shown to affect respiratory viral infection rates and may 
explain some of the unexplained variability between the 
FSAs [49]. Environmental risks often disproportionately 
impact socially disadvantaged groups and may be more 
amendable to intervention than the FSA census-based 
variables in our study [50].

Our study revealed a strong association between larger 
household sizes in a FSA and a higher rate of SARS-
CoV-2 infection. This finding aligns with several other 
studies identifying a similar relationship [37, 51]. The 
higher infection rate is likely caused by close and fre-
quent contact with people indoors. Larger household 
sizes are often associated with smaller physical house 
sizes, poor housing conditions (e.g., ventilation), more 
people working outside the home as essential workers, 
and more household members sharing a room [51]. Pub-
lic health investment and policy recommendations to 
provide essential workers housing options to isolate out-
side of their homes, investments in housing, and better 
protective gear for essential workers are potential targets 
for intervention.

We identified a negative association between an 
increased number of people driving to work in an FSA 
and a lower rate of SARS-CoV-2 infection. After driving 
to work, the second most common form of commuting 
is public transportation, then walking or cycling. Sev-
eral studies have identified a relationship between pub-
lic transportation and risk of SARS-CoV-2 infection 
[52, 53]. The reduced infection risk in people driving 
to work is likely associated with avoiding close contact 
with people that would have occurred on public trans-
portation. The lack of ventilation and crowded public 
transportation systems can increase the risk of infection 
on public transportation systems compared to driving. 



Page 8 of 11Watson et al. Population Health Metrics           (2024) 22:27 

Policy recommendations to support working from home 
to reduce public transport crowding and improved venti-
lation systems in public transportation may be potential 
targets for intervention.

The heterogeneity in the between-FSA rates accounted 
for by the variables in the study can, through attenuation 
of the MRR, alert policymakers to factors to address at 
the population level and more explicitly consider how 
much between-region heterogeneity would still exist 
after accounting for individual- and area-level character-
istics. This can inform important decisions, such as pri-
oritizing resources and suggesting potentially modifiable 
intervention targets that may have the greatest impact. 
For example, out of the explanatory variables included in 
our study, our findings suggest potential interventions to 
address social determinants of household size may have 
the most influence on reducing the between-FSA rates of 
SARS-CoV-2. The MRR can be used as a summary mea-
sure to monitor the heterogeneity of an outcome between 
regions. For example, it can assess the before-and-after 
impact of a large-scale policy intervention on addressing 
the heterogeneity of an outcome between regions.

Our study results need to be interpreted consider-
ing the completeness of the individual model. Our 
study lacks individual- and area-level variables of the 
same sociodemographic factors (e.g., individual-level 
median income and average median-level income in the 
FSA). Previous research has shown that individual– and 
area-level measures do not measure the same construct 
[54–57]. The lack of individual-level measures of the 
same sociodemographic factors as the area-level mea-
sures makes it unclear whether the variation explained 
in the MRR by the area-level variables would disappear 
after including the corresponding individual-level vari-
ables. Therefore, we cannot parse whether the individual 
or area-level variables explain more FSA-level variation. 
One of the proposed potential benefits of the MRR is 
the ability to compare the magnitude of the MRR to the 
magnitude of the fixed effect rate ratios [22]. Our results 
suggest that compared to individual- and area-level vari-
ables included in our study, unmeasured factors in the 
FSA may have more relevance to the rate of SARS-CoV-2 
infection. However, it is often difficult to compare the 
magnitude of measures of association given differences in 
the underlying units of the variable, even when the vari-
able is standardized [41, 58]. Our analyses were focused 
on the MRR, but future studies can explore the inclusion 
of the variance partition coefficient to understand the 
systematic differences between geographies [22].

Some limitations of this study should be noted. The 
results of our study of positive test results for SARS-
CoV-2 were conditioned on being a laboratory-con-
firmed case from a lab that provided data to OLIS. Our 
analysis assumes that the distribution of the positive 

SARS-CoV-2 infections are randomly distributed across 
the FSAs in Ontario. However, the relationship between 
the individual- and area-level variables on the between-
FSA heterogeneity is likely different in individuals with 
a positive test result for SARS-CoV-2 not represented in 
OLIS or had a SARS-CoV-2 infection that was not labo-
ratory confirmed. In addition, geographical differences in 
access to tests and testing strategies may influence rates 
in ways unaccounted by the varying FSA random inter-
cepts used in our study. Our analysis used FSA-specific 
random intercepts that assume the infection incidence 
rate for individuals with a given set of characteristics var-
ies between FSA, and the association (or slope) between 
infection incidence rate and explanatory variables is con-
sistent (on average) across all the FSAs [14]. However, the 
association between the outcomes and the explanatory 
variables may vary across FSAs. In Ontario, some priority 
groups (i.e., health care workers) and settings (i.e., high-
risk congregate settings) received COVID-19 vaccina-
tions before May 1, 2021. We were not able to account for 
these individuals in our analysis.

The Canadian census data are only collected every five 
years, and because 2021 data were not available, we used 
2016 census data, which has the potential for misclassi-
fication [38]. The 2016 census data might not accurately 
reflect current geographic areas, especially areas affected 
by recent gentrification and rapid development. In addi-
tion, the 2016 census data cannot capture how people 
were affected by the COVID-19 pandemic (e.g., job loss) 
and how people changed their behaviours in response to 
the pandemic (e.g., drove instead of taking public trans-
port). The use of census data can result in the modifiable 
areal unit problem because a particular census geog-
raphy might not reflect the most relevant spatial units 
[38]. However, in our sensitivity analysis, our results 
were robust even when we changed the geographic unit 
from FSA to dissemination area in Additional file 1: Table 
S6. Our multilevel Poisson regression analysis was non-
spatial because the spatial proximity of the FSAs was 
not directly modelled. A non-spatial multilevel analysis 
with random effects for geographic clusters can indi-
rectly account for some spatial structure. However, our 
multilevel model does not allow for spatial smoothing or 
account for spatial autocorrelation. such as more com-
plex hierarchical Bayesian models [5, 59, 60]. If strong 
spatial autocorrelation exists, this could bias estimates 
and underestimate the variance. However, the multilevel 
Poisson model is better at handling large population-
based data and is easier to implement than hierarchical 
Bayesian models.

The main challenge in implementing multilevel models 
is the need for multilevel data that contains relevant indi-
vidual- and area-level variables. The accuracy of the mea-
sure of geographic variation and the potential relevance 
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of the individual- and area-level variables is determined 
by including relevant variables, especially individual-level 
variables. The lack of relevant individual data is com-
mon in multilevel studies [61, 62]. The existing tutorials 
on summary measures of the magnitude of geographic 
variation tend to focus more on theory, application, and 
interpretation [22, 23, 45, 63] rather than bias and study 
design. In our application of these models, we have high-
lighted some of the challenges to interpretation, consid-
ering study design limitations and strategies for dealing 
with potential sources of error. Our analysis assumed a 
steady-state population and a constant incidence rate 
over the study period [64]. A multilevel survival analysis 
using the median hazard ratio may be more appropriate 
for longitudinal studies interested in modelling interac-
tions, competing risks, variable person-time at-risk with 
changing immunity status, or variable incidence rate over 
time. Future applications of the MRR would be improved 
by examples of how to compute credible intervals for 
the MRR using commonly available software (e.g., SAS, 
R, and Stata). Future multilevel studies should continue 
to consider the theoretical underpinnings and strategies 
to overcome potential threats of validity when applying 
these methods [12–14, 65].

Conclusions
Understanding how social determinants affect population 
health outcomes and measuring how between-region 
heterogeneity in health outcomes are associated with 
individual- and area-level characteristics is an important 
goal in population health research. The use of multilevel 
models with the inclusion of summary measures of area-
level variation (i.e., MRR, MOR, MHR) could help move 
closer to this goal. This study has demonstrated how 
MRR and similar measures could be valuable to the pop-
ulation health toolkit to measure geographic inequities 
in population health outcomes and understand potential 
factors driving the heterogeneity.
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