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Abstract

Background: Prevention efforts are informed by the numbers of deaths or cases of disease caused by specific risk
factors, but these are challenging to estimate in a population. Fortunately, an increasing number of jurisdictions
have increasingly rich individual-level, population-based data linking exposures and outcomes. These linkages enable
multivariable approaches to risk assessment. We demonstrate how this approach can estimate the population burden
of risk factors and illustrate its advantages over often-used population-attributable fraction methods.

Methods: We obtained risk factor information for 78,597 individuals from a series of population-based health surveys.
Each respondent was linked to death registry (568,997 person-years of follow-up, 6,399 deaths).Two methods were used
to obtain population-attributable fractions. First, the mortality rate difference between the entire population and the
population of non-smokers was divided by the total mortality rate. Second, often-used attributable fraction formulas
were used to combine summary measures of smoking prevalence with relative risks of death for select diseases.
The respective fractions were then multiplied to summary measures of mortality to obtain smoking-attributable
mortality. Alternatively, for our multivariable approach, we created algorithms for risk of death, predicted by health
behaviors and various covariates (age, sex, socioeconomic position, etc.). The burden of smoking was determined
by comparing the predicted mortality of the current population with that of a counterfactual population where
smoking is eliminated.

Results: Our multivariable algorithms accurately predicted an individual’s risk of death based on their health
behaviors and other variables in the models. These algorithms estimated that 23.7% of all deaths can be
attributed to smoking in Ontario. This is higher than the 20.0% estimated using population-attributable risk
methods that considered only select diseases and lower than the 35.4% estimated from population-attributable
risk methods that examine the excess burden of all deaths due to smoking.

Conclusions: The multivariable algorithms presented have several advantages, including: controlling for confounders,
accounting for complexities in the relationship between multiple exposures and covariates, using consistent definitions
of exposure, and using specific measures of risk derived internally from the study population. We propose the wider use
of multivariable risk assessment approach as an alternative to population-attributable fraction methods.
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Background
Tobacco smoking kills 5.7 million in 2010
The scientific and general media regularly report the
number of deaths or cases of disease caused by risks
such as smoking, obesity, or physical inactivity. Many
clinicians and policymakers use these figures to
prioritize and advocate for change at both the individual
and population levels. Only a few, however, pause to
understand how these estimates are derived, and fewer
still consider their limitations.
For example, when the Institute for Health Metrics and

Evaluation, following the World Health Organization’s
Global Burden of Disease reports, estimated 5.7 million
deaths in 2010 were caused by tobacco smoking [1], many
may assume these deaths were directly observed in
smokers. Many may also assume that researchers have suf-
ficiently teased out the independent effects of interrelated
risk factors, such as physical inactivity and obesity. In fact,
while an abundance of work has been done to produce
valid estimates, there are limitations to commonly used
methods to estimate the population burden of risk factors.

How is the population burden of risk factors typically
estimated?
Population-attributable fraction methods are commonly
used to estimate the burden of risk factors. Typically,
these methods combine summary estimates of the fol-
lowing: prevalence of risk factor exposure, hazards relat-
ing exposure and burden outcome, and counts of
outcome (see methods for formulas). The estimate of 5.7
million deaths caused by tobacco smoking was not gen-
erated by comparing worldwide counts of deaths in
smokers and non-smokers, but rather by combining
prevalence estimates of smoking with smoking hazards
from the literature and then multiplying the proportions
with mortality counts for each country.

Do we need an alternate method?
The calculation of population-attributable fractions is use-
ful in jurisdictions with limited population-level data since
hazards (relative risks) can be obtained from the literature
and prevalence of exposure, if not available, can be inferred
from similar populations or from known associations
between certain exposures and outcomes (i.e. “indirect”
methods) [1-3]. However, population-attributable fraction
methods also have many limitations [2-4].
Many of the issues and limitations of population-

attributable fraction methods stem from using and
combining ecological, summary measures of exposure, out-
come, and hazard, across different sources of data:

• Exposure mismatch: Definition of exposure categories
(e.g., current and former smoking) across data-sources
for prevalence and hazard often differ.
• Confounding: Often uses adjusted hazards from the
literature. This is limited by the availability of
adequate studies or reviews.

• External generalizability: Choosing hazards is
complicated by heterogeneity among available studies.
Studies use differing sets of adjusted variables, varying
exposure definitions and distributions, and populations
with varying baseline risks, which may not be similar to
the target population.

• Imprecision: Even when well-adjusted hazards are
available (e.g., through meta-analytical techniques),
the application of external summary hazards to the
population of interest is imprecise. The distribution of
potential confounders in the population of interest is
ignored as individual-level adjustment is not possible.

New opportunities with linked exposure and
outcomes data
The single most important data requirement for improv-
ing estimates of risk factor burden in a population are
data systems that include population-based cohorts
(with information on various risk factor exposures) who
are followed for health outcomes. When such data are
available, it becomes possible to directly estimate the in-
cidence of disease in people both exposed and not
exposed to risk factors, opening up opportunities to meas-
ure attributable burden without relying on population-
attributable fraction methods.
In health care systems with a dominant payer (i.e.,

government or a conglomerate of funders), administra-
tive databases routinely collect information on health
and service use at a population level. As research infra-
structure and information technology develop, jurisdic-
tions are increasingly able to link individual-level data
captured in these databases, creating combined datasets
with a longitudinal array of information on health care
use and outcomes. Similarly, detailed information on
risk factor exposures is increasingly collected in cross-
sectional surveys representative of the population.
Examples include the United States National Health
Interview Survey, the Health Survey for England, the
Australian Health Survey, and various health surveys
in Scandinavian countries. In Ontario, Canada, the
Canadian Community Health Surveys are linked at an in-
dividual level to health care use and outcomes databases.
Other provinces and countries are developing similar
linked data repositories.

Multivariable models
Individual-level population-based data linking exposures
to outcomes can be used to generate multivariable algo-
rithms. These models estimate an individual’s probability
of an outcome given a set of exposures. Exposure-
outcome combinations are modeled when there is a
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well-established causal relationship, such as between
smoking and death. Potential confounding variables can
be included and interaction terms can be explored. The
appropriate statistical model (e.g., logistic regression,
linear regression, Cox proportional hazards) will be
dependent on the nature of the outcome variable (e.g.,
dichotomous, continuous, time to event) and its rela-
tionship to the independent exposure variables.
The use of such multivariable methods to estimate risk

factor burden is still rare [5,6]. The main benefit of this
approach is that it uses an internal, cohesive, individual-
level data source for the inputs of exposure, risk, and
burden.

Comparing methods for burden estimation
Our manuscript uniquely describes the use of predictive,
multivariable algorithms for the purpose of measuring
population-attributable burden and is the first to directly
compare such methods to population-attributable frac-
tion techniques. Using smoking-attributable mortality as
a case example, we present estimates derived from a sin-
gle set of population data sources (using a multivariable
risk assessment approach) and compare them with those
generated by traditional population-attributable fraction
techniques.

Methods
We used three methods for estimating smoking-
attributable mortality. First, we created multivariable
predictive algorithms for death and applied them to
the risk profile of the population. We compared these es-
timates with those calculated using the original formulas
for attributable-fraction, and also from widely used
population-attributable fraction techniques that combine
summary measures of prevalence, relative risk, and
mortality.

Data sources
We obtained prevalence estimates of smoking and other
behavioral risk factors from the Ontario sample of
the Canadian Community Health Survey (CCHS). The
CCHS provides ongoing cross-sectional estimates of
health determinants, health status, and health system
utilization at a sub-provincial level in two-year cycles.
The target population of the CCHS includes household
residents over 12 years of age in all provinces and terri-
tories, with the principal exclusion of populations on
Indian reserves, Canadian military bases, and some re-
mote areas. Respondents to the CCHS were linked to
the Registered Persons Database (RPDB), containing
information on births and deaths in Ontario.
The Cancer Prevention Study (CPS) II is a prospective

study of 1,185,106 adults (at baseline) in the United
States over the age of 30 years [7]. Disease-specific
relative risk estimates for current and former smokers as
compared to never smokers were obtained from CPS II,
which have often been used to estimate other estimates
of smoking-attributable mortality using population-
attributable fraction methods. We used updated relative
risks mainly derived from CPS II, published in the 2014
Surgeon General’s report (Table 12.3), that have in-
creased the number of age-groupings and considered
more recent datasets [8].

Multivariable algorithms for mortality
We examined three cycles of the CCHS (2001, 2003,
2005) and using linkage to RPDB observed for any
deaths from the time of entry into the CCHS (Figure 1).
Individuals were excluded if they did not agree to have
their records shared with the provincial government, if
they could not be linked to the death registry (using a
probabilistic algorithm), if their health card became in-
eligible (signifying possible migration), or if the records
had missing values for variables of interest.
The linked dataset was used to generate sex-specific,

age-adjusted Cox proportional hazard models for death.
This type of regression was chosen because the primary
outcome was time to death and due to the need to ac-
count for censoring. Smoking was included as one of the
main predictor variables in the model, with the exposure
levels of daily current heavy smoker (≥1 pack/day), daily
current light smoker (<1 pack/day), former smoker, and
never smoker. These levels of exposure were selected to
allow comparisons to attributable-fraction methods and
to other studies. Other health behavior predictor vari-
ables in this algorithm were: leisure physical inactivity
(total metabolic equivalent of task (MET)/day for a list
of activities), diet (index based on consumption of fruit
and vegetables, potatoes, fruit juice, and carrots), alcohol
use (drinks/week and bingeing), and stress (self-rated
single question). We also included in the model variables
related to age (time-varying covariate, including a spline
to account for rapid non-linear increase in mortality in
older ages), ethnicity (Caucasian vs. non-Caucasian),
education, rurality, neighborhood deprivation [9,10], and
regional injury hospitalization rates as they improved the
discrimination and/or calibration of the model.
The risk algorithms were applied to the risk profile of

the 2009 CCHS respondents to predict the 1 year mor-
tality of the current population. We then applied the
algorithm to a counterfactual population where no-one
smoked (i.e. all current and former smokers were re-
classified as a never smoker). The absolute difference
between the total deaths in the actual and counter-
factual population is the smoking-attributable mortality
(Figure 1).
We verified the predictive ability of our algorithm by

calculating the c-statistic, a measure of discrimination of



Apply Algorithm 

CCHS Cycle (year)  Number (person-yrs follow-up) Deaths
1.1 (2001) 25,997 (237,712) 2,894
2.1 (2003) 26,347 (190,659) 2,082
3.1 (2005) 26,253 (140,626) 1,423
Total 78,597 (568,997) 6,399

Deaths 
Registry 

(2001-2010)

Multivariable Risk Algorithm
Variables: Smoking, alcohol, physical activity, diet, stress
Covariates: Education, ethnicity, deprivation, age, rurality of dwelling, 
injury rate of region, rurality of region
Outcome: Death

CCHS 4.1 (2007) - 32,403 
persons, weighted up to 

9,582,000 Ontarians

Sum of 1-year 
individual risk of 

death
(B)

Counterfactual Population: 
Everyone = Never Smoker

Smoking 
Attributable 
Mortality: 
difference 

between (A)
and (B)

CCHS 
Probabilistic Linkage

Sum of 1-year 
individual risk of 

death 
(A)

Figure 1 Generation of multivariable risk algorithm for death based on smoking, other health behaviours, and covariates from the
Canadian Community Health Survey (CCHS).
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the model (i.e., its ability to resolve the population into
those that will die versus those that will not die). We
assessed accuracy of the model by comparing observed
and predicted risk across deciles of risk and calculated
the Hosmer-Lemeshow chi-square. We also validated
our model by examining how well it predicts death
across subgroups of variables not included in the model
(e.g., income and body mass index). More details of our
method can be found elsewhere [11].

Direct observation of excess deaths due to
smoking– Levin’s method
Population-attributable fraction (AFp) estimates the pro-
portion of disease that can be attributed to a particular
risk factor. The concept of AFp was first expressed by
Levin in 1953 as:

AFp ¼ It– Iuð Þ=It;

where It is the incidence rate of the outcome in the total
target population and Iu the outcome rate in those who
are unexposed [12]. The use of this formula is referred
to as Levin’s method. Multiplying AFp by mortality
counts generates population-attributable mortality
estimates.
We calculated AFp using Levin’s method by inputting

the mortality rate in the Ontario population (It) and the
mortality rate for non-smokers (Iu) as obtained using the
linked CCHS data. We calculated AFp for each sex and
five-year age groups and multiplied the fractions by the
number of all-cause deaths in Ontario within each cat-
egory. The age-/sex-specific smoking-attributable mor-
tality counts are then summed to obtain the total
smoking-attributable mortality.

Population-attributable fraction method
Burden estimates are not typically calculated using
Levin’s original method because the necessary data may
not exist. For many populations, we do not know the in-
cidence of disease broken down by individual risk expos-
ure. Whether a person smokes, drinks, or is obese is not
typically recorded in death or disease registries. Risk
factor exposure is infrequently collected as part of
population-level outcomes data. Consequently, current
population-based estimates of disease incidence in
the exposed (Ie) versus unexposed (Iu), are often not
available.
Instead, AFp is usually derived mathematically by

combining the prevalence of the risk factor (Pe) in
the target population with a measure of association
between the risk factor and burden (relative risk, RR),
obtained from epidemiological studies. Past and re-
cent efforts (e.g., Global Burden of Disease reports
[1], Centers for Disease Control and Surgeon General
smoking-attributable mortality estimates [7,8]) to esti-
mate the population burden of disease risk factors have
used this technique, modifying the basic formula for a di-
chotomous exposure [4,8,13-16]:

AFp ¼ Pe RR−1ð Þ½ �= 1þ Pe RR−1ð Þ½ �

We estimated AFp for smoking by combining preva-
lence estimates from the CCHS and disease-specific rela-
tive risks for smoking from the Cancer Prevention Study
II (CPS-II), published in the 2014 Surgeon General re-
port [8]. We did so for each disease thought to be caus-
ally linked to smoking [8], using AFp formula modified
for multiple exposure groups:

AFp ¼ p0 þ p1xRR1 þ p2xRR2ð Þ−1½ � = p0 þ p1xRR1 þ p2xRR2½ �

where p0, p1, and p2 represent the percentage prevalence
of never, current, and former smoking, while RR1 and
RR2 represent the relative risk of death due to a given
disease for current and former smokers, respectively,
with never smokers serving as the reference group and
counterfactual population. The AFp for each disease is
multiplied by the number of deaths in the population
from each respective disease to obtain cause-specific
smoking-attributable mortality estimates.
For each disease group, smoking-attributable mortality

estimates were estimated for males and females and by
the four age groups (35–54, 55–64, 65–74, and 75+
years) used in the CPS II relative risk estimates [8] and
summed to generate the total smoking-attributable
mortality.

Results
Multivariable algorithms
Out of the 123,821 Ontario respondents from the three
cycles of CCHS, 78,597 individuals were linked to the
deaths registry (RPDB) and had adequate information
for use in the algorithm (Figure 1). A total of 568,997
person-years of follow-up were observed, including
6,399 deaths. The hazards for smoking for heavy current
smokers, light current smokers, and former smokers
were 2.8 (95% CI: 2.4, 3.2), 2.2 (95% CI: 1.9, 2.5), and 1.4
(95% CI: 1.3, 1.5) for males and 2.9 (95% CI: 2.6, 3.4), 2.2
(95% CI: 2.0, 2.5), and 1.7 (95% CI: 1.5, 1.8) for females,
respectively (Table 1). The hazards for other parameters
in the model can be found elsewhere [11].
The CCHS 4.1 population had a combined total of

9,582,000 weighted individuals (Table 1). The age-
adjusted Cox proportional hazard model for males and
females was applied to the CCHS 4.1 population to pre-
dict a total of 68,200 deaths in the following year. The
counterfactual population where each individual was a
never smoker produced 26.1% and 21.4% fewer deaths
for men and women, for smoking-attributable mortality



Table 1 Characteristics of study population - CCHS 4.1 (2009), Ontario, age 20 years+

Sex Smoking status Population count (n) Prevalence (%) All-cause mortality hazard ratios*

Males Heavy current smoker 389 364 8.4 2.8 (2.4, 3.2)

Light current smoker 802 080 17.3 2.2 (1.9, 2.5)

Former smokers 1 273 064 27.5 1.4 (1.3, 1.5)

Never smokers 2 168 608 46.8 Reference

Total 4 633 116 100

Females Heavy current smoker 182 738 3.8 2.9 (2.6, 3.4)

Light current smoker 701 209 14.4 2.2 (2.0, 2.5)

Former smokers 974 084 20.0 1.7 (1.5, 1.8)

Never smokers 3 012 968 61.9 Reference

Total 4 870 999 100

*Hazard ratios calculated from model derived using Canadian Community Health Survey (CCHS) cycles 1.1-3.1, adjusting for physical inactivity, unhealthy eating,
stress, alcohol, and other covariates. Hazard ratios are followed by 95% confidence intervals in brackets.
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estimates of 11,332 and 9,285, respectively (Table 2).
This produced a total AFp of 23.7% and smoking-
attributable mortality of 20,573.
The models satisfied Cox proportional hazards as-

sumptions and produced a c-statistic of 0.87 for both
sexes. Calibration of the model was excellent across dec-
iles of risk of body mass index categories, income levels,
and 14 Local Health Integration Networks responsible
for health planning and resource allocation in Ontario
(data not shown).

Attributable-fraction techniques
Table 2 highlights differences between the three methods
used. When compared to estimates from the predictive
algorithm, direct observation of the excess mortality in
smokers (Levin’s formula) led to a larger total smoking-
attributable mortality of 30,711 and AFp of 35.4%
(Table 2). Males again produced greater attributable
mortality and AFp than females. Conversely, conven-
tional AFp techniques combining prevalence from the
CCHS and relative risks for specific causes of death from
CPS II yielded a smaller total AFp of 20.0% and
smoking-attributable mortality of 17,576.

Discussion
This study has shown that burden estimates can vary
considerably depending on the method used. Different
methods are feasible for different levels of data availabil-
ity. We have presented a multivariable modeling method
commonly used in clinical settings (e.g., Framingham
risk scores for heart disease), that is enabled when
individual-level data are collected at a population level
from exposure to outcome.

Strengths of the multivariable risk approach
The multivariable risk approach has several advantages.
First, there are difficulties with the interpretation of AFp
across risk factors in population-attributable fraction
methods. As discussed, hazards (RRs) used in the calcu-
lation of AFp are often inadequately or inconsistently ad-
justed for confounding, interaction, or mediation; thus,
AFp for multiple risk factors, estimated individually, can
add up to more than 1 [4,17,18]. On the contrary, the
multivariable modeling method allows simultaneous in-
clusion of multiple risks, along with relevant confound-
ing variables and interaction terms at the level of the
individual. In our case example, we concurrently exam-
ined the burden of physical inactivity, unhealthy diet,
alcohol, and stress while controlling for numerous con-
founders (Figure 1).
Advanced attributable fraction methods that calculate

partial population-attributable risk typically allow simi-
lar exploration in case–control and cohort studies
[19-23]. These methods can potentially be modified for
use in population-based studies of burden, but this again
necessitates linkage of population-based exposure and
outcome data at the individual level.
In our case example, Levin’s original formula led to

higher estimates of smoking-attributable mortality com-
pared to those from the predictive algorithm. This is
likely because Levin’s method simply examines the
difference between all-cause mortality in smokers and
non-smokers and does not account for the potential
confounders (e.g., alcohol use or socioeconomic position)
included in the predictive algorithm, thus inflating smok-
ing’s observed effect on death.
In contrast, estimates derived from the multivariable

algorithms were higher than those from population-
attributable fraction methods, which notably used
disease-specific estimates of relative risk. Excluded are
deaths from diseases for which robust etiologic studies
are not available. The use of disease-specific hazards is
particularly important in population-attributable risk
methods since potential confounders are typically not



Table 2 Comparison of three methods for estimating smoking-attributable fraction and mortality

Multivariable predictive algorithm Levin's Method Population-attributable fraction

Method comparison

Overview Multivariable models relating exposure
(and covariates) to outcome are created,
then applied to current exposure data
in the target population to predict total
burden. The models may be created
from earlier years of data from the same
target population.

Rate of outcome in the total population
is compared to the rate in the unexposed
population to estimate the contribution
of exposure to excess outcome.

Prevalence of exposure in the target
population is combined with hazards
relating exposure to outcome from
an etiologic study. This is done to
estimate proportion of burden
attributable to the exposure in the
population.

Computational method The models are applied to a
counterfactual population where
no one is exposed

(AFp) = (It-Iu)/It, AFp is multiplied by
total outcome count (see text)

AFp = [Pe(RR-1)]/[1 + Pe(RR-1)], AFp
multiplied by total outcome count
(see text)

Typical data Source Population-based, routinely collected
data on health outcomes that are
linked at the individual level to
exposure data, often from health surveys.

Not commonly available at the
population level. Cohort studies,
disease registries, or exposure data
linked to outcome.

Ecological, summary measures of:
prevalence from health surveys,
hazards from the literature, and
outcome counts from routinely
collected data.

Study data sources

Smoking prevalence
(target population)

Canadian Community Health Survey
(CCHS) 4.1

Not used CCHS 4.1

Hazard estimates CCHS 1.1 to 3.1 linked to death database Not used Cancer Prevention Study II, 2014
Surgeon General’s Report [8]

Mortality estimates Predicted by algorithm CCHS 1.1 to 3.1 linked to death
database

Death database (RPDB)

Smoking-attributable fraction/deaths, 2009–2010

Males

Smoking-attributable
fraction (AFp)

26.1% 36.8% 24.1%

Smoking-attributable
mortality (SAM)

11 332 15 998 10 648

Females

AFp 21.4% 33.9% 15.8%

SAM 9 285 14 713 6 928

Total

AFp 23.7% 35.4% 20.0%

SAM 20 573 30 711 17 576
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fully accounted for. This increases the need for caution
when including diseases for which smoking may have a
smaller independent contribution. Conversely, in using
robust population-based data to generate a multivariable
algorithm with high levels of discrimination, we can have
greater comfort in including deaths from all causes to
estimate attributable burden.
Second, linking exposure data directly to outcomes al-

lows the use of hazards that have been observed within
the target population. This avoids the issues of external
generalizability faced when hazards from etiologic stud-
ies are used in population-attribution fraction methods.
Third, the use of linked data allows consistent defini-

tions of exposure in measures of exposure prevalence
and disease hazards. For smoking, the level of consump-
tion before someone is deemed a current or former
smoker varies considerably in both health and etiologic
surveys. Such mismatch can lead to considerable error
in burden estimation [3]. Multivariable models allow
meaningful exposure categorization that reflects the dis-
tribution of exposure and hazard in the target popula-
tion, rather than trying to match the definitions used in
the hazard studies. For smoking, risk in the population
will be dependent not only on how one classifies a
current or former smoker (typical categories in etiologic
studies) but also on factors such as smoking intensity,
duration, and time since quitting.
Fourth, using individual-level data avoids the impreci-

sion of combining summary measures of exposure, risk,
and outcome across data sources [9,10]. For example,
the inputs for traditional methods are often not pow-
ered to produce precise age- and sex-specific AFp.
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For smoking, where both exposure and outcome vary
significantly by age and sex, using summary measures
can lead to biased estimates [3].
In most developed countries where the prevalence of

smoking decreases with increasing age, using broad age-
groups for AFps will lead to an overestimation at older
ages. Overall, smoking-attributable mortality is in turn
overestimated since mortality increases with age. The
2014 Surgeon General Report’s relative risk estimates [8]
has attempted to address this with the introduction of
four age-groups (compared with two for select diseases
in the 1989 report [7]). The new set of relative risk esti-
mates, used for the population-attributable fraction
method in this study, also considered more recent
follow-up data and included new disease groupings.
When compared to estimates generated using relative
risks published in the 1989 report (1982–1988 follow-
up), overall AFp increased from 18.5% to 20.0%, with a
resulting increase of smoking-attributable mortality from
15,803 to 17,576.
Finally, estimating disease incidence in the exposed

population enables the use of other measures that are
potentially more meaningful, such as reduced life ex-
pectancy and health-adjusted life expectancy, for those
exposed and for the entire population. In addition, there
are further benefits in the application of multivariable
models to time periods and regions beyond the original
derivation population:

• Validated and calibrated multivariable models can be
applied to current exposures to approximate future
burden. Past exposure levels can be applied to
estimate current burden, accounting for the varying
lag time between exposures and outcomes [3].

• Considerable advances in methods, including in the
calibration of predictive models, allow multivariable
algorithms to be applied to a range of populations
beyond the original study population.

• Case example: the prediction model created in
Ontario could be applied to other Canadian provinces
that participated in the same health survey.

• This opens the door for jurisdictions without linked
data to estimate disease incidence based on exposure
to risk factors.

• It is becoming increasingly apparent that it is possible
to use routinely collected population data to accurately
assess baseline risk (or disease incidence) that is
well-calibrated for risk factor exposures, as measured
in population health surveys.

Over the past 30 years, predictive risk algorithms have
been developed for application purposes in the clinical
setting, albeit using clinical data and with a focus on risk
stratification.
Limitations of the multivariable risk approach
Multivariable approaches to building prediction models
and estimating attributable fraction are well-established
methods. Our main contribution is their application to
estimate risk factor burden in the population.
One limitation of our approach is that our estimates

are conditional on the assumptions and validity of our
predictive models, which could change over time, neces-
sitating revision and recalibration. Our model, along
with the population-attributable fraction method, uses
baseline estimates of exposures, as necessitated by the
cross-sectional nature of the population-level data. Thus,
we cannot take into account time-varying exposures and
confounders [21-23].
Recent advances in attributable fraction methods are

also based on multivariate techniques and take advan-
tage of longitudinal studies, where repeated exposure
and outcome data are available at the individual level.
These advances include marginal structural models and
g-estimation, to account for time-varying covariates, and
longitudinal extensions of the average attributable frac-
tion method [20-22]. Such longitudinal studies, however,
rarely occur at a population level and are thus unable to
provide population burden estimates.
As with all risk-attribution methods, we were also lim-

ited in our ability to infer causality by unmeasured con-
founders. Nevertheless, we should continually attempt to
create models that best represent known causal relation-
ships and to build in complexities as more information
is obtained. More advanced modeling techniques, such
as hierarchical modeling and multilevel growth models
[24], can be increasingly incorporated as our under-
standing of causal pathways improves and more detailed
data are available at a population level.
Predictive models must be built and interpreted cau-

tiously when they are intended to infer causal relation-
ships [17,25]. Included exposures and covariates should
be strongly suspected of having causal relationships to
the outcome. Overly complex models, with variables
added solely to improve predictive precision, should be
avoided to prevent overfitting, where the model de-
scribes random error. Predictive performance, poor in
overfitted models, should be explored. Furthermore,
causal pathways should be considered, and variables dir-
ectly along the causal pathway should generally be
excluded to avoid reducing the hazard of the studied ex-
posure. The model-building approach for our case ex-
ample focuses on distal behavioral variables. We did not
sacrifice theoretical accuracy for improved prediction.

Conclusions
Significant resources are invested globally in the collec-
tion of data on risk factors. Many data systems, however,
continue to focus on producing prevalence estimates in



Figure 2 Methods to estimate the burden attributed to risk factors, based on the levels of data availability.
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the population, without planned linkage to health out-
comes. This necessitates the use of population-attributable
fraction methods. We present a method that circumvents
their well-documented limitations [2-4].
We recognize that many regions do not have the data

and resources required to produce population-based
predictive algorithms. Consequently, the method used to
estimate the burden of risk factors will be dependent on
the level of data development (Figure 2). Nevertheless,
systems for collecting data on risk factors should strive
to create population-based databases linking exposure
and outcome at the individual level. Linkages to health
administrative databases will enable modeling of out-
comes beyond mortality, such as progression to disease,
hospitalizations, and health care costs. Linkages with
non-health databases will allow estimation of disease
burden related to the broader determinants of health.
Global and regional burden of disease projects should

consider using the best available method for each popu-
lation. Gross differences in estimates between methods
can be reported as sensitivity analyses if comparisons
across jurisdictions with differing data availability are
performed. Individual regions such as Canada (CCHS),
the United States (National Health Interview Survey)
[5,6], England (Health Survey for England), and India
(the Million Deaths study) [26] that capture linked ex-
posure and outcome data at the individual level should
attempt to build multivariable models to estimate burden.
In addition, further work may explore the correct applica-
tion of multivariable algorithms to external populations,
following validation and calibration.
Clinical medicine uses multivariable risk algorithms,

such as the Framingham risk score, to predict outcomes
for individuals and show the combined contribution of
risk factors. Population health tools measuring popula-
tion burden from risk factors should strive to do the
same.
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