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Abstract

Background: Metabolic syndrome (MetS) is the co-occurrence of several conditions that increase risk of chronic
disease and mortality. Multivariate models for calculating risk of MetS-related diseases based on combinations of
biomarkers are promising for future risk estimation if based on large population samples. Given biomarkers'
nonspecificity and commonality in predicting diseases, we hypothesized that unique combinations of the same
clinical diagnostic criteria can be used in different multivariate models to develop more accurate individual and
cumulative risk estimates for specific MetS-related diseases.

Methods: We utilized adult biomarker and cardiovascular disease (CVD) data from the National Health and Nutrition
Examination Survey as part of a cross-sectional analysis. Serum C-reactive protein (CRP), glycohemoglobin, triglycerides,
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, fasting glucose, and
apolipoprotein-B were modeled. CVDs included congestive heart failure, coronary heart disease, angina, myocardial
infarction, and stroke. Decile analysis for disease prevalence in each biomarker group and multivariate logistic regression
for estimation of odds ratios were employed to measure the joint association between multiple biomarkers and CVD
diagnoses.

Results: Of the biomarkers considered, glycohemoglobin, triglycerides, and CRP were consistently associated with the
CVD outcomes of interest in decile analysis and were selected for the final models. Associations were overestimated
when using single-marker models in comparison with full models; individual odds ratios decreased an average of
16.4% from the single-biomarker models to the joint association models for CRP, 6.6% for triglycerides, and 1.4% for
glycohemoglobin. However, joint associations were stronger than any single-marker estimate. Additionally, reduced
models produced unique combinations of biomarkers for specific CVD outcomes.

Conclusion: The reduced joint association modeling results suggest that unique combinations of biomarkers with their
related measure of association can be used to produce more accurate cumulative risk estimates for each CVD.
Additionally, our results indicate that the use of multiple biomarkers in a single multivariate model may provide
increased accuracy of individual biomarker association estimates by controlling for statistical artifacts and spurious
relationships due to co-biomarker confounding.

Keywords: Cardiovascular disease, Biomarkers, Metabolic syndrome, Joint associations, NHANES

* Correspondence: coffman.evan@epa.gov

"National Center for Environmental Assessment, U.S. Environmental
Protection Agency, Oak Ridge Institute for Science and Education stationed
at the Environmental Media Assessment Group, Mail Drop B243-01, Research
Triangle Park NC 27711, USA

Full list of author information is available at the end of the article

- © 2015 Coffman and Richmond-Bryant; licensee BioMed Central. This is an Open Access article distributed under the terms of
( B.oMed Central the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public
Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.


mailto:coffman.evan@epa.gov
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Coffman and Richmond-Bryant Population Health Metrics (2015) 13:7

Background

Metabolic syndrome (MetS) is the co-occurrence of sev-
eral conditions to present elevated risk of cardiovascular
disease (CVD), as well as other diseases, including type
I diabetes, fatty liver, and all-cause mortality [1-5]. The
National Cholesterol Education Program’s Adult Treat-
ment Panel III (ATP III) defined six criteria for MetS, in-
cluding central obesity, dyslipidemia, elevated blood
pressure, insulin resistance/glucose intolerance, proin-
flammatory state, and prothrombotic state [3]. MetS is
often indicated clinically by biomarkers including waist
circumference, cholesterol, triglycerides, blood pressure,
fasting glucose, and C-reactive protein (CRP). The ATP
III recommended clinical criteria to diagnose MetS [3]:

e Waist circumference > 102 cm (men), > 88 cm
(women);

e Triglycerides > 150 mg/dL;

e High-density lipoprotein cholesterol (HDL-C) < 40
(men), < 50 (women);

e Systolic blood pressure (SBP) > 130 and/or diastolic
blood pressure > 85; and

e Fasting glucose > 110 mg/dL.

Clinical criteria are important risk factors for CVDs asso-
ciated with MetS, but they are nonspecific. Ridker et al.
used data from the Women’s Health Study to examine po-
tential differences in risk factors between women with and
without nonspecific CVD [6]. They observed significant el-
evations among women with CVD for several biomarkers,
including body mass index (BMI), CRP, total cholesterol
(TC), low-density lipoprotein cholesterol (LDL-C), and
apolipoprotein-B (apoB). Ridker and Anand et al. also
reviewed the literature for use of biomarkers to predict
CVD and observed no evidence of an optimal biomarker
[7]. However, multivariate models calculating risk of disease
based on combinations of biomarkers have provided rea-
sonable estimates and offer promising options for future
risk estimation if based on large populations [8]. Recent
large-scale studies where risk of CVD was estimated
from combinations of biomarkers have included the
Framingham Heart Study [9], the Systematic Coronary
Risk Evaluation system by the European Society of Cardi-
ology [10], and the Prospective Cardiovascular Miinster
Study [11]. Although biomarker models are not designed to
predict causality of disease, such multibiomarker associa-
tions are useful for estimating risk.

Given the nonspecificity and overlapping of biomarkers
in predicting disease, we hypothesize that unique combina-
tions of biomarkers can be used in different multivariate
models to develop more accurate risk estimates for specific
MetS-related diseases by reducing statistical artifacts and
spurious relationships due to co-biomarker confounding.
Hence, the objective of this study is to test for unique
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models in which multiple MetS biomarkers are employed
jointly to assess more accurately their association with spe-
cific CVDs for different age groups, obtain a cumulative
perspective of their impact on CVD, and provide a basis for
future development of predictive models. Such predictive
models may be used in the future both for estimates of
population risk and to approximate an individual’s risk
based on her/his combination of biomarkers. Decile ana-
lysis and regression are used to test these relationships for
the nationally representative National Health and Nutrition
Examination Survey (NHANES) sample dataset. These
analyses are presented for the purpose of estimating risk ra-
ther than to make a specific assessment of causality.

Methods

Study design

NHANES is comprised of interview (demographics, so-
cioeconomic status, dietary habits, and medical history),
examination (dental, medical, and physiological evalu-
ation), and laboratory segments [12-17]. NHANES uses
a complex, multistage, unequal probability of selection
cluster design to provide a nationally representative sam-
ple of the non-institutionalized US civilian population.
We conducted a cross-sectional study using data from
six independent two-year cycles of publicly available
NHANES data spanning 1999-2010. The NHANES
protocol has been approved by the National Center for
Health Statistics Institutional Review Board, and written
informed consent was obtained from all participants.
NHANES methodology and sample design have been
previously detailed elsewhere [18,19].

Study population

The study population consisted of adults > 20 years who
completed the laboratory component of the survey and
answered questions about their history of CVD and re-
lated health outcomes. Within the target age group, n =
32,458 participants answered questions regarding their
cardiovascular health. The subjects’ health data included
SBP and variables describing if they were ever told by a
health care professional that they had congestive heart
failure (CHF), coronary heart disease (CHD), stroke,
myocardial infarction (MI), or angina. Demographic data
(poverty-income ratio, sex, age, race/ethnicity), smoking
history, and BMI were also employed in the analysis.

Biomarkers

The biomarkers tested included CRP, glycohemoglobin,
plasma fasting glucose, ApoB, TC, LDL-C, HDL-C, and
triglycerides. These biomarkers were included because
they were obtained from blood samples during labora-
tory testing of NHANES participants. Fasting glucose,
ApoB, LDL-C, and triglyceride serum levels were only
measured in a subsample consisting of one-third of all
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persons 12 years and older in each NHANES cycle. The
subsamples were nationally representative, and appropri-
ate sample weights were applied to account for oversam-
pling. Blood samples were drawn, stored, and analyzed
according to specific protocols [20-25].

Statistical analyses

Summary statistics were tabulated to describe the gen-
eral population characteristics, biomarkers, and health
outcomes. Appropriate stratum values, sampling units,
and survey weights were applied so that nationwide in-
ference can be drawn [26]. Likewise, sample weights
were applied in all regression models.

Multivariate logistic regression was used to estimate odds
ratios (ORs) and joint association ORs to measure the as-
sociation between multiple biomarkers and CVDs [27]. For
the purpose of this study, joint associations measure the
odds of prevalent CVD respective to the simultaneous con-
centrations of each measured biomarker. Whereas an
interaction would measure how an individual association
between a CVD outcome and a biomarker concentration
varies given the change in concentration of another bio-
marker, a joint association measures the aggregated impact
on odds of disease for the selected markers by controlling
for potential confounding and co-explanation of disease
between the co-related variables. Biomarkers used in the
final models were determined by examining significant
changes in CVD prevalence across deciles of biomarker
serum concentrations. Next, we removed highly correlated
biomarkers. Although joint associations are robust to cor-
related variables [28], we were also interested in the indi-
vidual associations of single biomarkers within the joint
biomarker model, which can be impacted by correlation.
We used log-transformation to account for highly skewed
biomarkers in the models.

After the final biomarkers were determined, adjusted sin-
gle biomarker regression models were calculated for each
cardiovascular health outcome to serve as a level of com-
parison for the joint effect models. Base joint effect models
for each CVD had one term for each log-transformed bio-
marker as an independent variable. By including multiple
biomarkers, we simultaneously controlled for potential
confounding and overlapping associations between bio-
markers. We then built unique models for each CVD by
removing nonsignificant biomarkers from the base model
using iterative backwards elimination [29]. R? values are
often used to assess model fit and predictive power in lin-
ear regression but cannot be calculated directly for logistic
regression models. Statistical software calculated pseudo-
R? values for logistic regression, but we decline to present
them because they are not a measure of explained variabil-
ity and could potentially mislead the reader [30,31]. In
these joint association models, the log-transformed bio-
marker terms serve simultaneously as independent
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variables making up a portion of the overall joint associ-
ation and control variables when examining the individual
impact of a specific biomarker within the model. Because
the biomarkers serve as control variables, we compared
the reduced model single-biomarker OR estimates to the
full model single-marker estimates to assess meaningful
changes due to the removal of biomarker terms from the
models. In addition to base and reduced models for the
total study population, we stratified the base models by age
to examine potential differences.

Joint association ORs were calculated by taking the
exponentiated sum of the product of each log-transformed
biomarker regression coefficient and that respective log-
transformed biomarker’s interquartile range (IQR). Using
log-transformed IQR increments provided standardization
across biomarkers, making it easier to interpret the joint as-
sociation OR. Standard errors used for calculating the joint
association model confidence intervals (CIs) were deter-
mined using the covariance matrices for each individual
biomarker estimate, as described in Winquist et al. and in
Additional file 1 [27].

To control for potential confounders, we adjusted for
sex, age, race/ethnicity, BMI, smoking history, SBP, and
family income. We separated age into four groups: 20—
34, 35-44, 45-60, and 60+. Race/ethnicity was catego-
rized as: Mexican-American, white, black, and other.
BMI was classified, according to NIH guidelines, as:
underweight (<18.5 kg/m?), normal weight (18.5-25.0
kg/mz), overweight (25.0-30 l(g/mz), and obese (>30 kg/
m?). We divided subjects’ smoking status into: non-
smokers, former smokers, those who smoke some days,
and every-day smokers. SBP measures were categorized ac-
cording to American Heart Association classifications: nor-
mal (<120 mmHg), prehypertension (120-139 mmHg),
Stage 1 hypertension (140-159 mmHg), and Stage 2 hyper-
tension (>159 mmHg). Family income was measured as a
ratio of income-to-poverty threshold and then divided into
survey-weighted quartiles.

All analyses were conducted using SAS v9.3 (SAS In-
stitute Inc., Cary, NC). SAS sampling and survey analysis
procedures were used to implement NHANES stratum
values, sampling units, and survey weights to account
for unequal selection probability and the intentional
oversampling of demographic groups as a part of the
NHANES complex, multistage cluster design [26]. Sur-
vey weights were recalculated for the 10-year period be-
fore they were applied.

Results

Study population

The study population consisted of n = 32,458 subjects
meeting the inclusion criteria. Sample size for the final
regression models ranged from »n = 2,119 to n = 28,348,
depending on age-stratification and inclusion of certain
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biomarkers that were measured in a subsample of the
study population. There were more females n = 16,936
than males n = 15,522, while whites were the most
highly represented racial/ethnic group at just over 70%
(Table 1). All study population statistics reflect applica-
tion of survey weights.

Serum biomarker concentrations

There were significant sex-related differences in survey-
weighted means of each biomarker (Table 2). Geometric
means were calculated for biomarkers with skewed dis-
tributions, resulting in a measure of central tendency
that is less influenced by extreme outliers. Men had sig-
nificantly higher geometric mean glycohemoglobin, fast-
ing glucose, ApoB, and triglycerides levels than women,

Table 1 Study population characteristics, US adults aged
20 and older, NHANES 1999-2010

n (% within group®)

Overall 32,458 (100.0)
Sex

Male 15,522 (48.0)
Female 16,936 (52.0)
Age (years) (x = 46.5)
20-34 8,576 (28.3)
35-44 5483 (20.7)
45-60 7,649 (29.2)
60+ 10,750 (21.8)
Ethnicity

Mexican-American 6,552 (7.8)
White 15,993 (70.4)
Black 6,388 (11.2)
Other 3,525 (10.6)
BMI

Underweight (0-18.5) 493 (1.9)
Normal (18.5-25) 8,656 (314)
Overweight (25-30) 10491 (34.0)
Obese (30+) 10,349 (32.7)
Smoking status

Nonsmoker 17,008 (51.7)
Former smoker 8,350 (24.7)
Some days 1,229 (3.7)
Every day 5824 (19.9)
Systolic blood pressure

Normal (<120 mmHg) 15,166 (52.5)
Prehypertension (120-139) 9,608 (32.1)
Stage 1 hypertension (140-159) 3,937 (10.8)

Survey-weighted.
PBMI is only available for a smaller subset of participants who completed the
mobile exam center exam.
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as well as higher mean LDL-C. Meanwhile, women had
higher TC and HDL-C mean levels and CRP geometric
mean levels than men. There were significant differences
in all biomarkers among age, race/ethnicity, and BMI
quartile groups, while disparities across smoking status
and income-to-poverty quartile were present for most
biomarkers.

CVD prevalence

Survey-weighted prevalence of CVD ranged from 2.35%
(95% CI: 2.13, 2.56) for CHF to 3.45% (95% CI: 3.16, 3.75)
for MI (Table 3). The overall prevalence of CVD, measured
as subjects who experienced at least one measured out-
come, was 8.64% (95% CI: 8.10, 9.18). Depending on the
health outcome of interest, prevalence varied significantly
relative to sex, age, race/ethnicity, BMI, smoking status,
and income-to-poverty ratio quartile group.

Serum biomarker deciles and CVD prevalence

We calculated survey-weighted deciles of biomarker
concentrations to examine unadjusted associations be-
tween biomarkers and CVD outcomes. Participants
within the top deciles of CRP, glycohemoglobin, fasting
glucose, and triglycerides had significantly higher preva-
lence of each measured outcome than subjects in the
bottom decile (Table 4) and thus were considered for
our joint association models. Among the four remaining
biomarkers, there were significant negative associations
of decile-level TC, LDL-C, and HDL-C with CVD. With
the exception of a negative association with CHD, asso-
ciations with ApoB were not significant.

Joint association models

CRP, glycohemoglobin, and triglycerides were considered
for the final models. Although we found negative associa-
tions of TC and LDL-C with CVD, it is widely reported
that the opposite relationship exists, and therefore we did
not include any of the cholesterol variables in our final
models [32]. Additionally, we found that participants with
self-reported high cholesterol had a much higher preva-
lence of MI, further indicating that the negative associa-
tions observed are an artifact of the study design and not
indicative of the true associations (Additional file 1: Table
Sla and b and accompanying note). We eliminated fasting
glucose from consideration because it was highly correlated
with glycohemoglobin (r = 0.83, Additional file 1: Table S2).
Furthermore, the associations between glycohemoglobin
and CVD observed in the decile analysis were more robust
than those involving fasting glucose (Additional file 1: Table
S3). As mentioned previously, despite the robust nature of
joint association models, the individual measures of associ-
ation that comprise the joint estimate can still be impacted
by correlation. This resulted in a three-biomarker base



Table 2 Demographic-stratified survey-weighted laboratory biomarker means and 95% confidence intervals

CRP*(mg/dL) B Fasting ApoB®° Total cholesterol HDL-C . Triglycerides®®
Glycohemoglobin® (%) Glucose®® (mg/dL) (mg/dL) (mg/dL) (mg/dL) LDL-C” (mg/dL) (mg/dL)

X 95% ClI X 95% ClI X 95% CI X 95% Cl X 95% ClI X 95% Cl X 95% ClI X 95% ClI
Overall 0.185 0.179,0.190 546 544,548 1004 998,61009 916 904,929 2000 199.2,2008 52.7 524,531 1182 1173,1191 1168 1150, 1185
Gender
Male 0.154 0.149,0.159 549 547,551 1032 1025,1039 935 923,947 1982 197.1,199.2 47.1 468,475 1194 1182,1206 1254 122.7,1282
Female 0219 0.211,0227 544 542,546 978 971,984 899 884,914 2017 200762027 580 574,585 1170 1158,1182 1092 107.2,111.3
Age (years)
20-34 0.144 0.138,0.150 5.16 5.14,5.18 931 926,937 845 831,859 1857 1846, 1868 514 509,518 1097 1081, 111.2 1014 986, 104.2
35-44 0.171 0.162,0.180 534 531,536 976 967,986 919 896,943 2017 200.1,2033 517 511,523 1190 1170,1209 1152 1110,1197
45-60 0202 0.193,0211 5.61 5.58, 563 103.7 1028, 1047 978 959,998 2098 2082, 2114 533 528,539 1260 1243,127.7 1253 1225,1281
60+ 0242 0234,0249 580 577,583 1086 107.7,1096 924 909,939 2033 202.1,2045 547 541,553 1179 1165, 1194 1294 1272,1316
Ethnicity
Mexican-American 0.207 0.194,0.220 553 5.50, 557 1029 1015,1043 949 933,965 1976 1963,1990 497 491,502 1173 1155,1192 1265 1222,131.0
White 0.180 0.174,0.187 541 539,544 1000 993,1006 917 902,932 2012 2002 2022 529 524,534 1188 117.7,1199 1196 11751217
Black 0229 0.217,0.242 565 562, 5.68 1002 989, 1015 889 873,905 1937 1924,1949 558 553,564 1156 1140,1172 913 885, 941
Other 0.160 0.147,0.173 555 551, 5.60 1014 998,1030 915 888,943 2000 197.7,2022 509 50.1,51.8 1171 1143,1199 1206 116.1,1254
BMI
Underweight (0-18.5) 0.066 0.057,0.078 5.18 5.15,522 914 901,927 762 717,809 1813 1774,1851 644 623,604 994 946,1042 802 740, 868
Normal (18.5-25) 0.101 0.09, 0.105 5.27 525,529 948 942,953 844 83.1,857 1941 1929,61953 595 589,600 1124 1110,1138 935 916, 954
Overweight (25-30) 0.174 0.169,0.180 543 541,545 1005 99.7,1012 953 939,968 2049 2036,2062 515 51.1,520 1229 1216, 1243 1245 12181272
Obese (30+) 0363 0.354,0373 569 566, 5.71 1063 1054,107.2 957 939,975 2017 2005,62029 470 466,474 1204 1189, 1218 1382 1348, 1416
Smoking status
Nonsmoker 0.171 0.165,0.178 544 542, 546 994  988,1000 905 89.1,91.8 1987 1978,1996 537 533,541 1173 11621184 1100 107.7,1123
Former smoker 0.196 0.188,0.205 555 552,557 103.7 1027,1048 93.1 915,948 2027 201.2,2042 531 525,537 1194 1176,121.2 1253 1219, 1287
Some days 0.166 0.153,0.180 537 531,544 996 969, 1025 909 86.7,953 1993 1957,2028 528 515,541 1146 1096, 1196 1155 1096, 121.7
Every day 0211 0203,0.205 544 542,546 987 979,996 93.1 909,954 200.1 1986,2015 497 491,504 1194 1177,121.2 1251 1219,1284
Income to poverty
quartile®
Quartile 1 0212 0203,0221 553 551,555 1013 1005,1022 910 895,925 199.1 1979,2003 513 507,519 1173 11581189 1200 117.2,1228
Quartile 2 0.195 0.186, 0.205 5.50 547,553 101.7 1006, 1028 925 908,942 199.1 197862004 523 518,528 1180 1165, 1196 1186 1157, 121.7
Quartile 3 0.179 0.171,0.187 542 540, 545 990 982,999 90.7 887,926 1999 1985,201.2 526 521,531 1179 1162.1196 1140 110.7,1175
Quartile 4 0.158 0.150,0.166 5.39 537,542 995 987,1003 923 904,943 2017 20022033 547 540,554 1193 1173,1213 1148 1116, 1180
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Table 2 Demographic-stratified survey-weighted laboratory biomarker means and 95% confidence intervals (Continued)

Systolic blood pressure

Normal (<120 mmHg) 0.162 0.157,0.167 535 5.33,537 970 963,976 889 876,903 1955 1945,1962 534 530,538
Prehypertension (120-139) 0.199 0.191,0.207 553 550, 555 1031 1023,1040 939 923,955 2027 2015,62040 51.0 506,515
Stage 1 hypertension (140-159) 0237 0.224,0.252 5.68 5.64,5.71 1069 1055,1084 995 939,995 2090 20702109 534 526,542
Stage 2 hypertension (>159) 0274 0257,0.291 582 5.76, 5.87 1086 1060,111.3 100 976,104 2121 2096, 2147 559 549, 56.9

1155
120.5
1233
1229

1143, 116.7
1189, 1220
120.8,125.7
119.7, 126.1

107.8
1259
1318
137.0

105.7, 109.8
122.6,1293
127.6,136.2
1304, 1438

“Geometric mean.
PPopulation subsample.
‘Income to poverty quartile is a categorical measure of the ratio of family income to poverty threshold (Q1: 0.00-1.33 Q2: 1.34-2.72 Q3: 2.73-4.65 Q4: 4.65-5.00).
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Table 3 Demographic-stratified cardiovascular outcome prevalence and 95% confidence intervals

Congestive heart failure Coronary heart disease Angina Mi Stroke

n (case/total) %° 95% CI° n (case/total) % 95% CI® n (case/total) %° 95% CI° n (case/total) %® 95% CI* n (case/total) %® 95% CI?
Overall 1,122/32333 235 213,256 1414/32279 340 3.3,367 1,065/32329 260 232,287 1511/32389 345 3.16,3.75 1,284/32408 275 251,266
Gender
Male 619/15,449 2.58 230,286 941/15426 340 4.20,508 574/15456 286 248,323 993/15489 455 409,501 635/15495 242 217,266
Female 503/16,884 213 186,241 473/16853 225 196,254 491/16,873 235 203,268 518/16,900 244 215,273 649/16913 3.06 270,341
Age
20-34 14/8,574 0.19 008,031 14/8573 0.15 006,025 13/8571 0.14 004,024 26/8573 034 0.17,050 30/8576 038 0.22,0.54
35-44 37/5476 055 034,077 32/5475 065 040,090 42/5474 076 049, 1.03 53/5477 081 053,109 49/5478 092 059,126
45-60 204/7,634 1.98 1.58,238 245/7,622 300 250,350 215/7,672 261 209, 313 284/7,640 332 278,386 218/7,642 223 183,263
60+ 867/10,649 738 676,801 1,123/10609 109 10.1,11.7 795/10657 756 678,835 1,148/10599 102 944,110 987/10,712 830 7.53,9.06
Ethnicity
Mexican-American 137/6,511 1.00 080, 1.21 180/6,511 1.53 1.25,1.81 150/6,518 132 094,169 175/6,535 140 1.13,1.67 168/6,544 134 1.03, 1.66
White 648/15,941 247 220,275 965/15908 402 367,436 694/15945 299 264,334 983/15957 394 358,430 722/15960 288 257,319
Black 250/6,369 300 254,346 168/6358 194 162,276 132/6363 161 130,193 249/6,382 298 257,339 303/6,385 364 321,407
Other 87/3,512 1.80 1.30,231 101/3,502 219 162,276 89/3503 1.94 139,249 104/3515 220 1.72,268 91/3519 200 143,257
BMI
Underweight (0-18.5) 9/491 1.04 032,176 14/490 1.84 066,302 8/439 122 001,243 19/492 234 099,370 11/492 274 084, 464
Normal (18.5-25) 183/8,630 1.34 1.10,1.58 271/8,620 216 1.86,246 190/8,634 1.71 135,208 288/8,644 228 194,261 243/8,646 184 152,216
Overweight (25-30) 313/10,450 218 1.88,248 468/10434 373 326,421 321/10448 248 210,286 459/10471 341 297,386 364/10474 258 224,292
Obese (30+) 424/10,313 320 274,365 500/10,297 426 378,474 422/10309 359 3.12,407 552/10327 447 399,496 425/10335 327 283,371
Smoking status
Non-smoker 446/16,959 1.75 1.50,2.00 529/16,937 230 203,258 417/16,945 1.94 165,223 504/16,973 214 1.88,241 540/16,989 227 200, 2.54
Former smoker 484/8,295 403 353,452 685/8274 6.81 6.08,7.53 482/8303 451 399,503 697/8332 634 563,705 486/8332 372 329,415
Some days 28/1,228 1.79 092,266 29/1225 1.81 088,279 29/1,229 1.85 1.11,2.59 39/1,229 216 1.28,304 34/1229 213 1.23,3.02
Every day 161/5,805 1.92 153,230 169/5,797 232 1.85,279 135/5806 207 153,261 269/5811 351 297,406 221/5811 291 240,342
Income to poverty quartile®
Quartile 1 504/11,836 338 298,378 536/11816 3.59 3.15,403 423/11,839 322 271,373 665/11,.864 444 391,496 581/11,886 382 336,427
Quartile 2 352/8239 335 293,376 401/8220 407 362,452 337/8236 321 275,366 441/8258 431 373,489 369/8255 357 297,417
Quartile 3 171/6,315 174 134,214 236/6303 286 239,332 156/6314 197 275,366 217/6319 260 219,301 209/6,320 218 182,255
Quartile 4 95/5,943 094 0.70, 1.19 241/5,940 3.10 260, 361 149/5940 1.98 153,243 188/5948 244 201,288 125/5947 143 1.14,1.73
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Table 3 Demographic-stratified cardiovascular outcome prevalence and 95% confidence intervals (Continued)

Systolic blood pressure

Normal (<120 mmHg) 523/16,832 2.09
Prehypertens ion (120-139) 273/9,581 194
Stage 1 hypertens ion (140-159) 199/3,905 3.83

Stage 2 hypertens ion (>160) 127/2,015 5.03

1.85,2.33
1.64, 2.24
3.10, 458
3.99.6.06

559/16,808
412/9,554
283/3,899
160/2,018

2.54
3.30
6.47
790

223,285
284,376
541,753
6.29, 951

438/16,819

303/9,579
206/3,909
118/2,022

213
241
455
542

1.87,2.38
201, 2.81
367,542
4.10,6.73

647/16,845
426/9,592
280/3,925
158/2,027

2.78
335
5.99
6.86

245,310
287,382
4.94, 705
5.63,8.08

521/16,853
342/9,596
221/3,929
200/2,030

213
247
457
8.56

1.87,2.38
212,282
3.85,5.29
6.84, 10.3

Survey-weighted.

PIncome to poverty quartile is a categorical measure of the ratio of family income to poverty threshold (Q1: 0.00-1.02 Q2: 1.03-2.12 Q3: 2.13-3.87 Q4: 3.88-5.00.
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Table 4 Summary statistics and survey-weighted CVD prevalence by survey-weighted deciles of laboratory biomarkers

Summary statistics Congestive heart failure Coronary heart disease Angina Mi Stroke
Range x? 95%CP n(case/ %* 95%CI® n (case/ %  95% CI° n(case/ %° 95%CI° n (case/ %° 95% CI° n (case/ % 95% CI*
total) total) total) total) total)

C-reactive Protein (mg/dL)
All - 001-296 0417 0405, 0429 916/28817 228 206,251 1,229/28778 343 3.15,371 921/28816 262 233,291 1,296/28869 344 3.15,373 1,055/28,882 268 242,294
D1 001-003 0021 0020,0021 21/2373 073 030,116  39/2,371 139 0.89, 190 32/2,377 134 077,191 48/2,381 139 0.84,1.95 38/2,381 093 050, 1.36
D10 097-296 2044 1.979,2108 202/3350 528 437,618 178/3,343 45 368,533*% 163/3347 441 358, 524* 222/3361 528 442,614% 193/3362 492 405, 5.80*
Glycohemoglobin (%)
All 200-188 551 549,553 926/29,000 230 208,253 1,242/28958 344 3.15,372 932/28999 263 234,292 1,313/29051 345 3.16,3.75 1,074/29,066 271 244,298
D1 200-483 467 466,468  21/2225 089 042,136 28/2227 087 044,129  16/2227 075 034,116  34/2,227 116 063,168  38/2227 144 080, 2.08
D10 6.07-188 734 730,742 363/4390 747 644,849*% 415/4379 969 848, 1091* 315/4386 7.13 5.94,832% 456/4,409 9.70 860, 10.80* 342/4417 698 6.04, 7.93*
Fasting glucose (mg/dL)
All - 380-587 1027 102.0,1034 377/12929 218 187,248 528/12915 338 301,374  401/12920 260 221,298 578/12957 348 308,388  457/12962 270 233,307
D1 380-849 804 800,807 23/1,272 130 070,191  23/1,269 1.7 077,262 17/1,271 124 049,199 23/1,274 1.28 066, 1.90 27/1,276 1.79 094, 264
D10 119-587 1615 157.8,1652 119/1684 644 4.76,811% 162/1,683 934 753,11.15 132/1681 775 6.00, 9.50% 174/1,691 9.92 791,11.94% 114/1,692 580 4.53,7.06*
Apolipoprotein (B) (mg/dL)
All  240-3450 1027 937,963 211/6,883 232 188,276 289/6877 346 298,393 195/6,877 230 1.83,277 324/6,895 3.73 3.18,4.28 260/6,899 283 230,336
D1 240-639 804 544,558  35/613 418 227,610 49/611 645 466,864  24/613 333 157,509 41/614 6.05 402,808  38/616 378 234,522
D10 127-345 161.5 1426, 1456 23/731 255 115,396  24/733 2.53 146,360 11/730 1.14 051,178  25/732 287 152,422 27/733 307 134,479
Total cholesterol (mg/dL)
All - 720-727 2000 199.2,2008 909/28688 228 206,250 1224/28648 343 315,372  916/28686 260 231,289 1,292/28740 344 3.15,373  1,046/28753 267 240,293
D1 720-150 1347 134.1,1352 206/2867 499 396,602 280/2,855 844 7.13,9.76 169/2,868 496 3.84,608 244/2872 6.92 579,805 164/2,875 387 3.10,4.63
D10 253-727 2808 279.2,2825 86/3,046 212 150,273t 106/3,041 325 253,397t 97/3,044 276 204,349t 125/3,047 334 257,412t 119/3,051 334 249,418
HDL cholesterol (mg/dL)
All - 70-188 52.7 524,531 909/28686 228 206,250 1,223/28646 343 314,371  916/28684 260 231,289 1,291/28738 344 3.15373  1,045/28751 266 239,293
D1 70-343 304 302,306 152/2,654 395 3.19,471 187/2652 508 427,588 122/2,648 339 265,414 193/2,662 532 439 6.24 135/2,659 366 294,439
D10 73.7-188 855 850, 86.0 74/3,130 193 138,247 71/3126 177 131,224+ 72/3134 210 151,269 103/3,133 265 195,335t 86/3,135 203 146, 2611
LDL cholesterol (mg/dL)
All - 21.0-344 1182 1173,1191 364/12474 218 186,250 508/12459 335 297,373 383/12465 253 215,290 556/12,503 351 3.10, 391 437/12,506 262 2.24,3.00
D1 210-750 634 627,640 90/1,308 502 376,628 132/1304 925 7.11,1138 88/1,309 582 406,758 119/1312 794 626,962 79/1314 413 309 516
D10 163-344 1859 1842, 187.7 33/1,281 172 105,239t 37/1,281 199 1.29,270t 26/1276 139 072,207t 47/1,282 246 164,327t 46/1,282 300 1.78,4.22
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Table 4 Summary statistics and survey-weighted CVD prevalence by survey-weighted deciles of laboratory biomarkers (Continued)

Triglycerides (mg/dL)

All - 140-3,780 1407 1376,1439 374/12,7838 219 188,250 524/12774 339 3.02,376  395/12,779 257 219,295 570/12817 348 3.09,3.88
D1 140-583 479 473,486 18/1,161 1.08 042,174 25/1,161 1.61 092, 230 18/1,160 1.08 058,158 29/1,161 1.90 1.19, 261

D10 237-3,780 3822 3648,6399.7 52/1397 326 2.18,433* 76/1399 510 3.63,656% 62/1397 460 3.19,601* 86/1,399 574 426,722*%

449/12,821
21/1,161
57/1,398

265 228,302

141
351

0.80, 2.02
249, 4.54%

Survey-weighted.
*D10 prevalence significantly higher than D1 prevalence at a = 0.05.
D10 prevalence significantly lower than D1 prevalence at a = 0.05.
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model for each outcome, from which backwards elimin-
ation yielded outcome-specific reduced models.
Single-biomarker models of CRP, triglycerides, and
glycohemoglobin were strongly associated with each
CVD, though the associations between triglycerides and
stroke or MI were not significant (Table 5). The base
models’ joint association estimates combining all three
biomarkers (Table 6) were stronger than any estimate
from the single-biomarker models. Joint associations
from the base models ranged from 25.1% increased odds
for CHD (OR = 1.25; 95% CI: 0.92, 1.71) to 152.5% for
CHF (OR = 2.53; 95% CI: 1.86, 3.44). These estimates
are smaller than the exponentiated sum of the three es-
timates from the single-biomarker models, consistent
with the work of Winquist et al., because the single-
biomarker models do not control for covariate con-
founding [27]. Controlling for other co-predictors in
the joint association models resulted in lower individual
OR estimates than in the single-biomarker models.
While all but two individual ORs were significant in the
single-biomarker models, seven biomarker ORs were
not significant in the joint association models. The lar-
gest decrements in individual estimates occurred for
CRP, with ORs decreasing an average of 16.4% from the
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single-biomarker models to the joint association
models, compared to 6.6% for triglycerides and 1.4% for
glycohemoglobin. While CRP was significantly associ-
ated with each of the CVD outcomes in the single-
biomarker models, it was only significantly associated
with CHF (OR = 1.86; 95% CI: 1.44, 2.43) and stroke
(OR = 1.36; 95% CI: 1.07, 1.72) after controlling for tri-
glycerides and glycohemoglobin in the joint association
models. Triglycerides were strongly associated with an-
gina in the joint association model, with an IQR in-
crease in log-triglycerides being associated with a 23.6%
increase in odds of angina (OR = 1.24 CIL: 1.02, 1.50).
Glycohemoglobin was significantly associated with
every CVD outcome, with the odds of disease increasing
between 8.5% and 16.9% for every IQR increase in log-
glycohemoglobin, depending on the specific disease.
After removing nonsignificant biomarkers from each
model, we arrived at a unique reduced model for each out-
come. CHF and stroke joint association models included
CRP and glycohemoglobin; the angina joint association
model included triglycerides and glycohemoglobin; and MI
and CHD models included only glycohemoglobin (Table 7).
The ORs for the fully adjusted reduced joint association
models were all significant, indicating that a joint increase

Table 5 Adjusted® log-transformed single-marker logistic regression model results

OR®

Cases/n B xIQR (95% Cl) p-value

CHF

Triglycerides 352/12,561 0.2614 1.299 1.057, 1.596 0.0128

CRP 859/28214 0.6057 1.833 1.538,2.183 <0.0001

Glycohemoglobin 869/28,390 0.1606 1.174 1.120, 1.232 <0.0001
Angina

Triglycerides 378/12,550 02520 1.287 1.067, 1.551 0.0083

CRP 888/28,211 0.2427 1.275 1.077, 1.509 0.0048

Glycohemoglobin 889/28,387 0.1430 1.154 1.099, 1.211 <0.0001
Mi

Triglycerides 550/12,587 0.1389 1.149 0.982, 1.345 0.0833

CRP 1,239/28,261 0.2151 1.240 1.086, 1417 0.0015

Glycohemoglobin 1,256/28,436 0.1446 1.156 1.112,1.201 <0.0001
Stroke

Triglycerides 420/12,590 0.1297 1.139 0.952, 1.362 0.1565

CRP 966/28,270 03765 1457 1.238,1.715 <0.0001

Glycohemoglobin 985/28,447 0.1250 1133 1.085, 1.184 <0.0001
CHD

Triglycerides 508/12,548 0.1681 1.183 1.021,1371 0.0251

CRP 1,186/28,175 0.1953 1216 1.037, 1425 0.0161

Glycohemoglobin 1,198/28,348 0.1708 1.186 1.142,1.232 <0.0001

“Models adjusted for age, sex, race/ethnicity, BMI, smoking status, systolic blood pressure, and family income.

POR estimates calculated for an IQR change in the respective biomarker, or an IQR in each biomarker for the joint effect estimates. IQRs for In(T: riglycerides, mg/dL) = 0.798
[corresponding to a 2.22 fold increase in non-transformed Triglycerides], In(CRP, mg/dL) = 2.22 [corresponding to a 9.21 fold increase in non-transformed CRP],
In(Glycohemoglobin, %) = 0.0935 [corresponding to a 1.10 fold increase in non-transformed glycohemoglobin].
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Table 6 Adjusted® log-transformed joint association
logistic regression base model results
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Table 7 Adjusted® log-transformed reduced joint
association logistic regression model results

CVD outcome (cases/n) B x IQR ORP (95% Cl) p-value CVD outcome (cases/n) f x IQR OR®  (95% Cl) p-value

CHF (351/12,531) CHF (858/28,163)

Triglycerides 0.1654 1180  0961,1459  0.1141 CRP 0.5647 1.759  1473,2.100 <0.0001
CRP 0.6209 1861 14352432  <0.0001 Glycohemoglobin 0.1412 1.152 1096, 1.210  <0.0001
Glycohemoglobin 0.1399 1150  1.062,1.246  0.0006 Joint association 0.7059 2026 1699, 2415 <0.0001
Joint association 0.9262 2525 1.856, 3.437 <0.0001 Angina (378/12,523)

Angina (377/12,520) Triglycerides 02133 1235 10181499 0.0323
Triglycerides 02119 1236 1.016,1.504 00342 Glycohemoglobin 0.0972 1102 1.022,1.188 00114
CRP -0.0082 0992  0.742,1326 09560 Joint association 0.3086 1362 1.126,1.646 0.0015
Glycohemoglobin 0.0974 1102 1.021,1.190 00123 MI (1,256/28,436)

Joint association 03012 1352 1.006, 1.816  0.0456 Glycohemoglobin 0.1446 1156  1.112,1.201  <0.0001

Ml (549/12,557) Stroke (963/28,219)

Triglycerides 0.0834 1.087 0923,1280 03164 CRP 03429 1409 1.197,1.659 <0.0001
CRP 0.0478 1049 0822,1339  0.7005 Glycohemoglobin 0.1165 1124 1.076,1.173  <0.0001
Glycohemoglobin 0.1304 1139 1.058,1.227  0.0006 Joint association 0.4594 1583 1.338,1.873 <0.0001
Joint association 0.2617 1299  0997,1693 00527 CHD (1,198/28,348)

Stroke (418/12,560) Glycohemoglobin 0.1708 1.186  1.142,1.232  <0.0001

Triglycerides 0.0686 1.071  0888,1.292 04743 “Models adjusted for age, sex, race/ethnicity, BMI, smoking status, systolic
blood pressure, and family income.

CRP 0.3042 1.356 1.072,1.715 00112 POR estimates calculated for an IQR change in the respective biomarker, or an IQR

Glycohemoglobin 00812 108510101164 0028 1y bomater or e ot ssocdton st 0% for s

Joint association 04538 1575  1.194,2077 00013 In(CRP, mg/dL) =2.22 [corresponding to a 9.21 fold increase in non-transformed
CRP], In(Glycohemoglobin, %)=0.0935 [corresponding to a 1.10 fold increase in

CHD (508/12,518) non-transformed glycohemoglobin].

Triglycerides 0.1082 1114 0965, 1.287  0.1419

CRP 00404 0960 0719,1.284  0.7851 for an IQR increase in log-glycohemoglobin was 1.16 (95%

Glycohemoglobin 0.1560 1169 1.092,1251  <00001  CI: 1.11, 1.20) for MI and 1.19 (95% CI: 1.14, 1.23) for CHD.

Joint association 02238 1251 09181705 0.1565 In addition to the base and reduced models, we used

“Models adjusted for age, gender, race/ethnicity, BMI, smoking status, and
family income.

POR estimates calculated for an IQR change in the respective biomarker, or an
IQR in each biomarker for the joint effect estimates. IQRs for In(Triglycerides,
mg/dL) = 0.798 [corresponding to a 2.22 fold increase in non-transformed
Triglycerides], In(CRP, mg/dL) = 2.22 [corresponding to a 9.21 fold increase in
non-transformed CRP], In(Glycohemoglobin, %) = 0.0935 [corresponding to a
1.10 fold increase in non-transformed glycohemoglobin].

in serum concentrations of the selected log-transformed
biomarkers was associated with an increase in the odds of
the corresponding cardiovascular outcome. Specifically,
joint IQR increases in log-CRP and log-glycohemoglobin
were associated with increased odds of CHF (OR = 2.03;
95% CI: 1.70, 2.42) and stroke (OR = 1.58; 95% CI: 1.34-
1.87), and a joint increase in log-triglycerides and log-
glycohemoglobin was associated with increased odds of
angina (OR = 1.36; 95% CI: 1.13, 1.65). Log-transformed
glycohemoglobin was the only biomarker that was signifi-
cant in every outcome-specific reduced model. Neither tri-
glycerides nor CRP were significant for MI or CHD, such
that the reduced models were single-biomarker glycohemo-
globin models. For those single-biomarker models, the OR

age-stratified models to examine age-related differences in
biomarker-CVD associations. The lowest age groups (20—
34 and 35-44) had such a limited number of cardiovascular
events that most estimates were imprecise and unreliable
(Additional file 1: Tables S3a and S4e). The associations in
the older age groups (45-60 and 60+) did not deviate no-
ticeably from the nonstratified models.

Discussion

Our study explored associations between serum biomarkers
and CVD. Using a joint association approach to logistic re-
gression modeling, we saw a variety of associations of indi-
vidual and joint biomarkers with CVD. Consistent with
previous studies, we found that single-biomarker models of
CRP, triglycerides, and glycohemoglobin were significantly
associated with CVD [33-37]. However, we found that the
magnitude and significance of these associations decreased
after controlling for covariate confounding of the selected
biomarkers in the joint association models. This demon-
strates the likely presence of confounding among the bio-
markers; the potential exists for overestimation of the
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association between individual biomarkers and CVD when
failing to adjust for other co-varying biomarkers.

Biomarker associations with CVD were overestimated
when using single-biomarker models in comparison with
the full models. While single-marker CRP models showed
strong associations with angina, MI, and CHD, those re-
sults were no longer significant when controlling for tri-
glycerides and glycohemoglobin. While a number of
studies have shown a strong association between CRP and
CVD, there is evidence that the relationship may lessen in
relation to diabetes status [33]. A 2002 long-term follow-
up case control study by Sakkinen et al. found that the
predictive effect of CRP for MI was diminished in men
with diabetes [35]. Sakkinen et al. hypothesized that this
attenuation was likely due to an overlap in information be-
tween CRP concentrations and diabetes diagnosis, which
is supported by multiple studies that found significant cor-
relations among CRP, diabetes, and other features of MetS
[34,38,39]. These concerns have also been raised regarding
evidence supporting an association between triglycerides
and CHD. In a review of the literature, Sarwar et al. con-
cluded that associations between triglycerides and CHD
remain uncertain due to potential codependence of other
risk factors, such as other lipids [40]. Our findings sub-
stantiated this uncertainty, as a significant association be-
tween triglycerides and CHD in the single-biomarker
model was no longer significant when controlling for CRP
and glycohemoglobin. These examples demonstrate the
advantage of a multivariate approach. While these bio-
markers on their own can be important predictors of
CVD, by controlling for confounding between the bio-
markers, it may be possible to achieve a more accurate
evaluation of how biomarkers affect CVD risk on an indi-
vidual basis.

Glycohemoglobin was the only biomarker in our ana-
lyses that was significantly associated with MI or CHD,
and thus it was the only biomarker to be significantly as-
sociated with every CVD outcome in the reduced joint
association models. This is consistent with existing evi-
dence of an association between diabetes mellitus and
CVD. A review of epidemiologic studies shows both
cross-sectional associations and prospective temporal re-
lationships between diabetes and CVD incidence and
mortality [41]. Our study also found that of all variations
of CVD examined, glycohemoglobin had the strongest
association with CHD, which has previously been estab-
lished as the most common CVD outcome in adults
with diabetes [41,42].

Although the individual biomarkers are associated with
the CVD tested here, the reduced joint association model-
ing results suggest that unique combinations of bio-
markers with their related measures of association for
each model can be used to produce a unique risk estimate
for each CVD. For example, CRP and glycohemoglobin
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were jointly associated with CHF and stroke, whereas tri-
glycerides and glycohemoglobin were jointly associated
with angina. Hence, where biomarkers have served as
general indicators of CVD risk, joint models can be uti-
lized to indicate risk for specific CVDs. Moreover, the
reduced joint association models indicated large in-
creases in CVD odds for joint increases in biomarker
concentrations that were larger than the OR estimate
from any single marker within that model but still lower
than if the overall association were estimated from
single-biomarker models. As in the individual bio-
marker estimates, controlling for co-predictor con-
founding prevents an overestimation of the joint
biomarker association [27].

Our conclusions are limited by several factors of our
study design. As with all cross-sectional studies, we are
unable to examine temporality between the biomarkers
and outcomes. Thus, incidence of disease cannot be
assessed here. Using a proxy measure creates the poten-
tial for subjects with recently increased or decreased bio-
marker concentrations to have measured levels that do
not match their historical exposure. This could be par-
ticularly relevant to patients who have reported CVD
but are currently taking medications or undergoing
other health interventions, including improved diet and
exercise, that may have lowered their biomarker levels.
This potential differential exposure misclassification may
have led to observed odds ratios that underestimate the
true magnitude of the associations [43]. Observed ORs
may also be underestimated due to survival bias,
whereby high biomarker levels may be predictive of
CVD mortality [44-47]. We speculate that the negative
associations seen between CVD prevalence and TC and
LDL-C levels are at least partially the result of survival
bias and/or the use cholesterol medication post-CVD
diagnosis. Another potential limitation of the lack of
temporality is the possibility that CRP levels were ele-
vated by post-event inflammation in participants who re-
ported CVD [48], resulting in CRP associations biased
away from the null.

The age-stratified analysis was hindered by a low num-
ber of CVD cases in the younger age groups, resulting in
imprecise and unreliable ORs, making it difficult to infer
potential relationships among age, biomarker levels, and
CVD. Sex-related differences were not explored for this
project, because division by sex would have further re-
duced the numbers of cases. Additionally, CVD status
was self-reported and thus was not verified. In general,
self-reporting of disease status and exposures, including
medication, diet, and exercise, add uncertainty to the
analysis. Although we do not expect the accuracy of self-
reporting to vary across biomarker levels, it is possible
that self-reporting accuracy varied on some factor simul-
taneously affecting biomarker levels, which may have
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introduced unknown bias into our measures of associ-
ation. However, the analysis presented here does not
presume to judge causality between self-reported disease
status and the combinations of biomarkers tested here.
This analysis reports associations for the purpose of esti-
mating risk.

Despite these limitations, our study had a number of
strengths. To our knowledge, this is the first large-scale
analysis using a joint association approach to assessing
the relationship between multiple biomarker concentra-
tions and CVD. NHANES provides a nationally repre-
sentative sample of the US, such that our results can be
generalized to the US adult civilian population. The large
sample size of NHANES lends confidence to the assess-
ment that helps to offset the uncertainties listed above.
Given the consistency of NHANES sample design and
data collection methodology, our results can provide a
basis for comparison when analyzing relationships be-
tween CVD and biomarkers among future cohorts.

Conclusions

Our work has built upon evidence from a multitude of
previous studies that have demonstrated associations be-
tween triglycerides, CRP, and glycohemglobin and varia-
tions of CVD. Specifically, this study highlights the need
to consider a joint effects approach to determining both
individual biomarker associations as well as the impact
of simultaneous increases in multiple biomarker concen-
trations. This approach may lead to more accurate indi-
vidual biomarker risk estimation through co-predictor
confounding control, a cumulative perspective of the im-
pact of related biomarkers on CVD, and the potential to
observe unique combinations of biomarkers that may be
predictive of variations of CVD. Future longitudinal
studies on the joint effect of multiple biomarkers on
CVD are needed to assess temporal relationships and
determine whether these models can be developed to
predict future onset of CVD. Additionally, expanding
joint association models to include interaction terms
could provide detail as to how the joint associations vary
given specific combinations of biomarkers (ie., high
CRP vs. low glycohemoglobin).

Additional file

Additional file 1: Multiple biomarker models for improved risk
estimation of specific cardiovascular diseases related to metabolic
syndrome: a cross-sectional study.
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