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Abstract

Background: Demographic and socioeconomic changes such as increasing urbanization, migration, and female
education shape population health in many low- and middle-income countries. These changes are rarely reflected
in computational epidemiological models, which are commonly used to understand population health trends and
evaluate policy interventions. Our goal was to create a “backbone” simulation modeling approach to allow
computational epidemiologists to explicitly reflect changing demographic and socioeconomic conditions in
population health models.

Methods: We developed, evaluated, and “open-sourced” a generalized approach to incorporate longitudinal,
commonly available demographic and socioeconomic data into epidemiological simulations, illustrating the
feasibility and utility of our approach with data from India. We constructed a series of nested microsimulations of
increasing complexity, calibrating each model to longitudinal sociodemographic and vital registration data. We
then selected the model that was most consistent with the data (i.e., greater accuracy) while containing the fewest
parameters (i.e, greater parsimony). We validated the selected model against additional data sources not used for
calibration.

Results: We found that standard computational epidemiology models that do not incorporate demographic and
socioeconomic trends quickly diverged from past mortality and population size estimates, while our approach
remained consistent with observed data over decadal time courses. Our approach additionally enabled the
examination of complex relations between demographic, socioeconomic and health parameters, such as the
relationship between changes in educational attainment or urbanization and changes in fertility, mortality, and
migration rates.

Conclusions: Incorporating demographic and socioeconomic trends in computational epidemiology is feasible
through the “open source” approach, and could critically alter population health projections and model-based
evaluations of health policy interventions in unintuitive ways.
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Background

To understand and address population health trends and
to evaluate potential health policy interventions, mathem-
atical simulation models are commonly used—relating
individual-level risk factor exposures and interventions to
population-level health outcomes. Demographic and so-
cioeconomic conditions that shape population health are
changing rapidly in many low- and middle-income coun-
tries. These changes are challenging to incorporate into
models, as they affect population health in complex ways.
For example, rapid urbanization may have both positive
and negative effects on population health. Urbanization
can increase access to skilled medical care, and poten-
tially facilitate higher household earnings that correlate
with improved health outcomes [1]. However, rural mi-
grants to urban areas often encounter increased expos-
ure to environmental pollution, slum living, and disease
risks stemming from unhealthy diets [2—-4]. Large de-
veloping countries are shifting from being majority
rural to mostly urban by 2050, highlighting the pressing
importance of understanding the health effects of com-
plex socioeconomic transitions [5]. In addition to
urbanization, other complex socioeconomic transitions
include the increase in age-associated disability and
chronic diseases [6, 7]. Educational attainment and lit-
eracy levels are also increasing [8, 9], and accompany
lower fertility, higher female labor force participation
and associated complex changes in maternal and child
health outcomes [10].

Modeling the complex interactions of demographic
and socioeconomic conditions requires accounting for
simultaneous, interacting exposures experienced by
individuals over their lifetimes [11]. In the past, nu-
merous high-quality health policy models implicitly
assumed that current exposures to demographic and
socioeconomic conditions would remain the same in

Table 1 Data used for model calibration and parameter estimation?
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the future [12-15]. This assumption is understand-
able, given the challenges of estimating parameters to
describe how different birth cohorts experience vary-
ing exposures; however, such factors may influence the
accuracy of projections made by these models.

The goal of our study is to bridge the gap between
available data on demographic and socioeconomic
changes in low- and middle-income countries and
simulation models of population health and health pol-
icy. Our specific aim in this paper is to create, validate,
and “open source” a simulation modeling approach that
allows population health modelers to explicitly reflect
changing demographic and socioeconomic conditions.
Our approach is intended to be intuitive and simple
enough to be easily incorporated into health policy sim-
ulations, but also faithful to available data. We illustrate
it using India’s demographic and socioeconomic data
on trends in fertility, all-cause mortality, education, and
migration, using the types of datasets available from
many developing countries [16]. To facilitate replica-
tion and extension of our approach, we provide our
complete data and model code (see Additional File 1
and Tables AF1-AF5).

Methods

Overview

We developed the Stanford Project for Open Know-
ledge in Epidemiology in India model (SPOKE-I). An
overview of the process used to develop the model is as
follows: First, we constructed a series of nested simula-
tion models of increasing complexity. Second, using
multiple empirical data sources detailed below and
itemized in Table 1, we produced a set of targets for
modeled outcomes to match. Third, using a Bayesian
approach [17], we calibrated each model’s simultaneous
fit to these empirical targets. Fourth, we selected the

Parameter Data sources Data details
Fertility National Family Health Survey waves 1-3 (NFHS): Number of total children ever born to mother,
1992-3, 1998-9, 2005-6) [24-26] by maternal age and urban/rural residence,
Additional file 1: Table AF1
Mortality Sample Registration System (SRS): 1972-2008 [23] Probability of death by calendar year, age, sex,

NFHS 1-3 (1992-3, 1998-9, 2005-6)
and District-Level Household Survey
wave 3 (DLHS-3): 2007-8 [24-27]

Educational attainment
NFHS 2 and 3 (1998-9, 2005-6) [25, 26]

Migration

Population size

United Nations Population Division, 1992-2010 [6]

and urban/rural residence, Additional file 1: Table AF2

Prevalence of no education, primary school, secondary
school, and greater than secondary school education,
by age, sex, and urban/rural residence, Additional file 1:
Table AF3

Proportion of women who had migrated from urban to
rural areas or vice versa within the last 6 years, 12 years,
and ever in their lifetime, stratified by age, sex, and urban/
rural residence, Additional file 1: Table AF4

Absolute population size by calendar year, stratified by urban/
rural residence, Additional file 1: Table AF5

? Full data disaggregated by age, sex, urban/rural residence, and educational attainment status are provided in Additional file 1: SI Tables AF1-S5
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Table 2 Comparisons of three calibrated models reveal that one incorporating secular trends is more consistent with the observed

data®
Model Components ADIC when fit against Table 1 data sources
1 Age, sex, urban/rural residence, fertility, mortality Reference
2 Age, sex, urban/rural residence, fertility, mortality, +5.2 versus model 1
educational attainment
3 Age, sex, urban/rural residence, fertility, mortality, —259.1 versus model 2

educational attainment, migration

2 A model incorporating both education and migration rates best explains the variance in the data, even when penalizing the use of more parameters using the
deviance information criterion (DIC). Note that lower DIC scores are considered better (reflecting better fit to data and fewer parameters to accomplish the fitting),

and a >10 point difference is considered meaningful [42]

simulation model that was most consistent with the
empirical data (i.e., greater accuracy) while penalizing
models with larger numbers of parameters (i.e., favoring
parsimony over complexity) [18]. Fifth, we assessed the
validity of the selected model’s projections against inde-
pendent data not used for calibration—specifically, life
expectancy estimates from the World Bank, which used
independent surveys for estimation [19]. Sixth, we eval-
uated the importance of incorporating demographic
and socioeconomic trends in the selected model by
comparing the model’s projections to that of a trad-
itional static population health model, comparing the
two against both historical data and independent pro-
jections of population size and life expectancy [6, 19].

Model structures

We modeled historic and future cohorts of Indian fe-
males, focusing on fertility, mortality, educational attain-
ment, and urban/rural migration given the strong
evidence linking these indicators to population health in
India [2, 20, 21]. We designed and constructed three
nested models of increasing complexity (Fig. 1). The
simplest model was stratified by age and urban/rural
residence and included only fertility and mortality rates
and their secular trends, aggregating across all educa-
tional attainment categories and ignoring migration. The
next model included stratification by educational attain-
ment categories (0, 1-5, 6-12, or >12 years of schooling)
and secular trends in educational attainment, but ig-
nored migration. The third model also included migra-
tion rates and secular trends in migration rates. We
implemented the models as stochastic microsimulations
in which we simulated a virtual population of multiple
birth cohorts of Indian females stratified by age, urban/
rural residence, and (if included) educational attainment.
These groups were subjected to correspondingly strati-
fied annual fertility, mortality, and migration rates using
a standard competing risks approach [22]. Modeled out-
comes included population size, total fertility rate, mor-
tality rate, education prevalence, number of migrants for
each cohort, and life expectancy from 1992 to 2025 (see
Additional file 1: AF1).

Data sources

Overview

We used population-representative data sources
(Table 1). These included the United Nations Population
Division’s (UNPD) historic estimates and future projec-
tions of population size and composition by sex and
urban/rural residence (1992-2025) [6], as well as India’s
Sample Registration System (SRS) and four large-scale
household surveys conducted in India between 1992 and
2008 [23-27]. Household surveys included all available
waves of India’s National Family and Health Survey
(NFHS-1 [1992-3], NFHS-2 [1998-9], and NFHS-3
[2005-6]), which are part of the Demographic and
Health Surveys conducted in over 90 countries every five
years [16]. We also used India’s District Level Household
and Facility Survey (DLHS-3 [2007-8]) to provide more
recent data [27]. All analyses of the household surveys
employed sample weights to adjust for non-coverage
and non-response, allowing us to calculate nationally-
representative estimates.

Starting population size and composition

The starting size and composition of India’s female
population in 1992 was input into the models based on
the UNDP overall female population size and its urban/
rural-specific age distribution [6]. The educational at-
tainment category distribution (0, 1-5, 6-12, or >12
years of schooling) for each age and urban/rural specific
subgroup was determined from the NFHS-1 [24].

Fertility

The NFHS provided data on fertility. Specifically, each
NFHS wave provided estimates of the number of chil-
dren born to a woman stratified by a woman’s age,
urban/rural residence, educational attainment category,
and calendar year.

Urban/rural migration

The NFHS provided information on migration between
rural and urban areas in India, specifically the propor-
tion of women who had migrated from rural to urban
areas or vice versa within the previous six years, 12
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Fig. 1 Model diagrams of three population models of increasing complexity. Three models were compared in the study, of increasing complexity. The
simplest model (a) was stratified by age and urban/rural residence and included only fertility and mortality rates and their secular trends, aggregating
populations across all educational attainment categories and ignoring migration. The next model (b) included stratification by educational attainment
categories (0, 1-5, 6-12, or >12 years of schooling) and secular trends in educational attainment, but ignored migration. The most complex model
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years, and ever in their lifetime, stratified by age, urban/
rural residential status, educational attainment category,
and calendar year.

Mortality

The SRS provided the main data on mortality [23]. Spe-
cifically, the SRS life tables for 1972 to 2008 contain esti-
mated death rates stratified by age, sex, urban/rural
residence, and calendar year. However, as the SRS life ta-
bles are not stratified by educational attainment, we sup-
plemented the SRS data with information derived from
the DLHS-3 on mortality stratified by educational

attainment from verbal autopsies of household members
(further detailed below in the Mortality section of ‘Mod-
eled Processes and Inputs’) [27].

Modeled processes and inputs

Overview

As illustrated in Fig. 1, individual women in our models
age deterministically and experience annual risks of fer-
tility, mortality, and (when included in the model) mi-
gration. Risks depend on the calendar year of a woman’s
birth, her current age, urban/rural residence, and (when
included) educational attainment category. Below we
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summarize these modeled processes (further details in
Additional file 1: AF1).

Fertility

In the model, births in a given year for women depend
on their age, urban/rural status, and (when included)
educational attainment category. We use a standard
demographic model of fertility (see Additional file 1:
AF1), specifically, the Gompertz-Pasupuleti model (G-
P) [28] which estimates the cumulative age-specific fer-
tility rate as:

t-a
log (0.95)

2

: (1)

where F >0, a>0, and b >0

In equation 1, G(2) is the cumulative age-specific fertil-
ity rate up to the age ¢ (i.e., total births per woman of
each age in in a given NFHS survey wave). The param-
eter F is the cumulative total fertility rate for women of
age ¢ in the given survey wave, a is the median age of
fertility (age of giving birth to half of the total number of
children that will ever be born to that woman), and b is
the length of the age interval during which the fertility
level rises from 5 % to 95 % of the cumulative rate. The
parameters for the G—P model along with a linear secu-
lar trend in fertility were fit to the empirical data as part
of our overall calibration procedure, which uses the
Markov Chain Monte Carlo (MCMC) estimation ap-
proach detailed below. Newborn girls enter the model
via this fertility process and are then included as mem-
bers of new birth cohorts, such that they age and poten-
tially experience fertility themselves in future years. The
newborn girls share the same urban/rural residential sta-
tus as their mothers at the time of their birth and are
placed into educational attainment categories based on
parameters fit to ensure that the educational attainment
of these girls match secular trends in education preva-
lence when they reach the 20 to 24 year age range (see
below under ‘Educational Attainment’).

Mortality

The model requires female mortality rates stratified by
age, urban/rural status, calendar year, and (when in-
cluded) educational attainment. However, SRS life tables
are not stratified by educational attainment nor do they
include future trend projections. To stratify by educa-
tional attainment, we applied a standard decomposition
from which the mortality rate for a given age, urban/
rural status, and calendar year-defined group was
decomposed into mortality rates specific to subgroups
defined by educational status as well [29]:
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Papy = Zs [p ey RRap et pe=oy (2)

In equation 2, y is the female mortality rate, a is age, p
is urban/rural residential status, y is calendar year, € is
educational attainment category (index O represents the
lowest attainment level, the reference category), p is pro-
portion of the overall group within each educational at-
tainment category, and RR is relative risk of death in
each educational attainment category with respect to the
reference category. This equation can be rearranged to
solve for the mortality rate in the reference category for
each age, urban/rural, and calendar year specific group:

Hape=0y — /’la,p,y/ [pa,p‘s:O,y + pa‘p,s:l,y (3)
RRupe=1 + P a,p,£=2,yRR“vPv€:2 tp a,p,s:3,yRRmp~,€:3]

Estimated the relative risk of death based on educa-
tional attainment for a woman of a given age and urban/
rural status from the DLHS (see Additional file 1: AF1
for details on estimating the relative risk). The NFHS
provided estimates of the proportion p of the population
in each educational attainment category for each group
in the three calendar years of the NFHS waves; we fo-
cused on 20 to 24 year-olds in the decompositions, since
educational attainment had plateaued by this age.

After decomposing the data into the mortality rate for
the reference group (lowest educational attainment level)
and the relative risk of death for each higher educational
attainment group relative to the reference group, we fit a
standard Lee-Carter-type model to the decomposed
mortality rates to project future trends in mortality [30].
The model fits three parameters to the log mortality
rate: a constant, a parameter multiplied by calendar year,
and a parameter multiplied by age. The three parameters
were fit to the data for each of three age clusters (<1
year olds, 1-10 year olds, >10 year olds) along with all
other model parameters (e.g., those describing fertility
and migration) as part of a single Markov Chain Monte
Carlo (MCMC) fitting process described below.

Educational attainment

Educational attainment in each of the four categories (0,
1-5, 6-12, or >12 years of schooling) was assigned to
each newborn girl based on birth year and urban/rural
residence, accounting for the linear secular trends in
educational attainment by calendar year such that the
educational prevalence each year follows the trend
among women aged 20 to 24 years old.

Urban/rural migration

The NFHS-2 provides counts of how many urban
dwellers in 1998 lived in a rural zone in 1992, and con-
versely how many rural dwellers in 1998 lived in an
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urban zone in 1992 [25]. The NFHS-3 similarly reveals
how many urban dwellers in 2005 lived in a rural zone
in 1999 and 1993, and how many rural dwellers in 2005
lived in an urban zone in 1999 and 1993 [26]. We esti-
mated, through the MCMC fitting procedure detailed
below, the annual net rate of rural-to-urban migration
and the linear trend in this rate to match the NFHS
data.

Model targets, calibration, selection, and validation

We sought a model that accurately and parsimoniously
reproduced the observed data on levels and trends in fer-
tility, mortality, urban/rural status, educational attainment
and migration, and could help us infer the joint uncer-
tainty distribution around parameter estimates describing
these processes to learn about the correspondence be-
tween these demographic and socioeconomic factors.
Such a model and joint uncertainty distribution can then
be used to make future population projections with uncer-
tainty bounds and be incorporated into decision-analytic
health policy models to examine the effects of interven-
tions over time. Therefore, we calibrated each of our three
candidate models (Fig. 1) to a set of empirical targets using
a standard MCMC algorithm [17].

The model targets for calibration included those listed
in Table 1 (see complete data in Additional file 1: Tables
AF1-AF5). The MCMC algorithm updated vague prior
distributions on a set of calibrated parameters to fit
these targets. These parameters included the cumulative
total fertility rate, median age of fertility, length of the
age interval by urban/rural residence, and (when in-
cluded) by educational attainment level, along with a lin-
ear secular trend in fertility (Equation 1 above); the Lee-
Carter parameters for mortality rate along with the rela-
tive risk of mortality by urban/rural residence and (when
included) by educational attainment level; the net rural-
to-urban migration rate and linear secular trend in mi-
gration rate by (when included) educational attainment
level; and (when included) the linear secular trend in
educational attainment by urban/rural residence. We re-
peated the fitting process 10 times from random starting
points to ensure convergence to a stable posterior joint
distribution of parameter estimates (see Additional file 1:
Figure AF1). We then selected among the three candi-
date models using the Deviance Information Criterion
(DIC) to choose the calibrated model that best fit the
data relative to its complexity [31] (see Additional file
1: AF1 for details of the MCMC calibration, including
convergence statistics).

Two forms of model validation were performed [32,
33]. We evaluated internal validity by ensuring that
modeled outcomes fit all input data shown in Table 1.
We then evaluated external validity by ensuring that
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modeled estimates of life expectancy among simulated
individuals matched independent estimates [19].

Assessing the importance of capturing secular trends

To assess the degree to which these efforts to model
trends in demographic and socioeconomic conditions
could alter model projections, we compared the chosen
model to a static model equivalent that included all
model components but did not include changes over
time in any of the demographic or socioeconomic in-
puts; that is, fertility, mortality, migration or educational
attainment parameters were held fixed at their starting-
year values, as is the current standard approach [12-15].
We first compared the two models over the period 1992
to 2010, contrasting their urban- and rural-specific
population size estimates with observed data [6]. We
next compared the two models starting from the year
2010 and projecting a further 15 years into the future, in
order to characterize the degree of divergence between
the two sets of model estimates (fixed and with trends)
and independent United Nations population projections
[6]. We finally compared life expectancy estimates from
the two models in terms of both historical (1992-2010)
and future projections (2010-2025), and contrasted pre-
dictions from the models for the impact of a simulated
intervention: efforts to increase the level of educational
attainment achieved by rural women, which would have
provided universal primary education to rural females in
the year 2000 [34]. Prior intervention studies (i.e., cluster
randomized trials and natural experiments) have estab-
lished that increasing primary education availability to
women lowers mortality through a number of complex
mechanisms such as reducing early marriage and associ-
ated premature fertility that increases the risk of mater-
nal mortality [35, 36]. We increased the educational
attainment rates among rural females to simulate univer-
sal primary education in 2000, comparing the resultant
estimated life expectancy differences between the two
models over subsequent years.

Technical details

Model code is provided in Additional file 1: AF1 in
accordance with IPSOR-SMDM Modeling Good Research
Practices guidelines [32]. All model calculations and simu-
lations were performed in MATLAB version R2013b (The
Mathworks, Cambridge, MA, USA). All analyses of survey
data used to construct model inputs and targets were per-
formed in Stata 13.1 (StataCorp LP, College Station, TX,
USA).

Results

Model selection, calibration, and validation

The SPOKE-I model — the model including fertility,
mortality, educational attainment, migration, and trends
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in each of these variables — fit the data listed in Table 1
better than the two simpler models, even after being pe-
nalized for increased complexity (Table 2). Specifically,
the SPOKE-I model’s ADIC was >10 points lower than
either of the other two models (R*>86 % for the pre-
ferred model fit relative to all data in Table 1).

Modeled outcomes from the calibrated model not only
were highly consistent with the calibration data (internal
validity) but also achieved consistency with data that
were not used for calibration (external validity). Figure. 2
illustrates a sample of typical model fits to the calibra-
tion targets derived from these datasets (internal valid-
ation), which are further detailed in Additional file 1:
Figures AF2-AF6. Fig. 3 shows the comparison of
model-predicted life expectancy to independent esti-
mates for life expectancy by year (external validation).

Calibration resulted in a posterior joint distribution of
model parameters that revealed the magnitude of im-
portant relationships between key demographic, socio-
economic, and population health variables, such as the
relationship between higher educational attainment and
the higher probability of rural-to-urban migration. Add-
itional file 1: Figure AF1 displays the posterior probabil-
ity distributions of the fitted parameters, which are
further detailed in Additional file 1: Table AF6. Implica-
tions of these relationships are described below.

Modeled fertility trends

Calibrated fertility patterns exhibited a declining time
trend and were differential between urban and rural
areas and across educational attainment levels. Fig. 4
provides cumulative fertility rates in India among urban
and rural women over time along with model fits, and
Additional file 1: SI Figure AF2 provides the disaggregated
fits by age, birth cohort, urban/rural residence, and educa-
tional attainment (R? > 83 % for the model fit to the fertil-
ity data). Between 1992 and 2010, model outcomes were
that women had 3.4 births on average in their lifetime
(95 % CI: 2.3-4.5), with a median age of fertility of 22.4
years (95 % CI: 15.3-29.6). The number of lifetime births
declined from an estimated 3.7 per woman (95 % CI: 2.4—
5.0) in 1992 to 3.0 (95 % CI: 2.2-3.9) in 2006. The most
educated women (those with >12 years of education)

Table 3 Relative risk of death declines significantly with
education®

Educational level RR of death — urban RR of death - rural

0 years 0.92 (0.87-0.97) 1.00 (referent)

>0-6 years 0.76 (0.62-0.90) 0.89 (0.85-0.95)
>6-12 years 055 (0.48-0.63) 0.72 (0.68-0.76)
>12 years 0.38 (0.19-0.56) 0.56 (0.41-0.71)

? Estimated mean relative risk of death by educational attainment category is
listed with 95 % confidence intervals in parentheses
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experienced 42 % fewer births in their lifetimes (95 %
CI: 41-43 %) than women having the lowest educa-
tional attainment (those without any schooling). The
largest relative difference in fertility between educa-
tional categories was between women having 6-12
years of schooling and those having >12 years of
schooling (25 % fewer births among the more highly-
educated group, 95 % CI: 24-26 %). The relationship
between fertility and education was larger than that be-
tween fertility and urban/rural residence; urban women
were estimated to experience 20 % fewer births than
rural women (95 % CI: 6-34 %). The differential impact
of attaining >12 years of schooling versus 6—12 years of
schooling was greater among urban than rural women
(22 % fewer births among urban women with >12 years
of schooling than among those with 6-12 years, 95 %
CI: 21-23 %, as compared to 29 % fewer births among
rural women with >12 years versus 6-12 years, 95 %
CI: 28-29 %).

Modeled mortality trends

Calibrated mortality patterns exhibited strong secular trends
and were differential between urban and rural areas and
across educational attainment levels. Fig. 5 provides mortal-
ity trends in India among urban and rural women over time
along with model fits, and Additional file 1: SI Figure AF3
provides the disaggregated model fits by age, birth cohort,
urban/rural residence, and educational attainment (R*>
92 % for the model fit to the mortality data). Overall mod-
eled life expectancy improved from 61.3 years for women in
1992 (95 % CIL: 59.4-63.2) to 67.0 years in 2010 (95 % CL:
65.0-69.0). As compared to rural women with no educa-
tional attainment, the relative risk of death was 0.56 (95 %
CIL: 041-0.71) for rural women with >12 years education
and 0.38 (95 % CI: 0.19-0.56) for urban women with >12
years education (Table 3). Mortality rates were approxi-
mately 34 % higher among rural than urban women (95 %
CI: 30-38 %). There was an estimated decline in the annual
probability of death of 0.014 (95 % CI: 0.009 to 0.020) over
the period 1992 to 2010.

Modeled migration trends

We estimated a significant transition towards increasing
exposure to urban environments through migration and
urbanization. The overall trend suggested that 8 % of rural
women would transition to urban areas between 1992 and
2010 (95 % CI: 6-10 %). Additional file 1: Figure AF4 illus-
trates the detailed model fits to migration rates across all
available years of data (R*>81 % for the model fit to
the migration data). Rural-to-urban transitions were
particularly common for women in their early 20s
(20-24 year-olds had a 16 % chance of transitioning
to urban areas between 1992 and 2010, 95 % CI:
14-17 %). The probability of such a rural-to-urban
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(See figure on previous page.)

Fig. 2 Correspondence between empirical data and the output of the calibrated models over multiple calendar years. The fitted model's
estimates of population dynamics correspond closely to multiple alternative datasets from India. A representative sample of model fits to Indian
datasets (listed in Table 1) are illustrated here, including (a) fertility, (b) mortality, (c) educational attainment, (d) migration, and (e) population size
fits. Model fits to the complete datasets for all population cohorts are provided in Additional file 1: Figures AF1-5S4. Here, a random subsample of
fits are provided as illustrations of how the model was fitted to disaggregated data for various calendar years and birth cohorts, where education

model-based estimates

category (“ed category”) for each cohort was categorized as 0: no education, 1: >0-6 years education, 2: >6-12 years, and 3: >12 years. Gray
shaded areas are results of 10,000 repeated samples from the posterior joint distribution of the fitted model (Fig. 1¢), with samples from the
interquartile range as black lines and data displayed as dashed blue lines or circles reflecting the 95 % confidence intervals of the input datasets.
The solid vertical bar in the population size figure (e) reflects the point at which UN data transition from recorded values to

transition was significantly higher for women with
greater educational attainment; the probability was only
5 % for 20—24-year-old rural women in the lowest edu-
cational attainment category (95 % CI: 4—6 %), but was
33 % for 20-24 year-old rural women in the highest
educational attainment category (95 % CI: 32—35 %).

Modeled educational attainment trends

Calibrated educational attainment exhibited an increasing
secular trend and strong urban/rural differences. The pro-
portion of the population in the lowest educational cat-
egory decreased by 1.4 % (95 % CI: 1.4-1.5 %) among
urban and 2.0 % (95 % CI: 1.5-2.6 %) among rural popula-
tions over the simulation period, while the proportion of
the population in the highest educational category in-
creased non-significantly by 1.3 % among urban (95 % CI:
-1.4-3.9 %) and by 0.3 % among rural populations (95 %

CIL: —0.3-1.0 %). The largest category among urban dwell-
ing women by 2008 was women with 6 to 12 years of
schooling, making up 54 % of the urban population but
only 39 % of the rural women, among whom the largest
group was those with no education (41 %). Additional file
1: SI Figure AF5 illustrates educational attainment trends
in India over time along with the model fits disaggregated
by age, birth cohort, and urban/rural residence (R*> 97 %
for model fits to the educational data).

Model comparison: Are demographic and socioeconomic
time trends necessary for modeling important population
health risk factors?

Since many current population health models assume
that demographic and socioeconomic exposures are
fixed in time, we examined whether our modeling ap-
proach that included time trends in these exposures

Life expectancy projections
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Fig. 3 Model-predicted life expectancy validated against independent estimates. Model-predicted life expectancy has face validity when compared
against independent World Bank estimates. Gray lines reflect results of 10,000 repeated samples from the posterior joint distribution of the fitted model
(Fig. 10), black lines refer to the samples from the interquartile range of the probability distributions, and blue circles reflect data and its 95 %
confidence intervals (diameter of circles)




Basu and Goldhaber-Fiebert Population Health Metrics (2015) 13:19 Page 10 of 17

(A) (D)

Fertility urban 1993 Fertility rural 1993

cumulative total fertility rate
cumulative total fertility rate

15 20 25 30 35 40 15 20 25 30 35 40
age age

Fertility urban 1999 Fertility rural 1999

5- . 5 5- =
2* o4
s ©
£ =
Ba B
5 °
[ e
s =
e [=]
o <!
g° 2>
E =
: :
Q
1 ”n
>3
15 20 25 30 35 4 0 : : : . |
age 15 20 25 30 35 40
age
Fertility urban 2006 ( )
5r T T T 7 Fertility rural 2006
5 ; - . .
4 45} i
o
g 4t 4
> o
£ Basl
E é 3.5
s T 25;
3 a
T s
g g 2
- -
o T
3 L
2 1.5
=
o 4l
05r
age /
. __ 1 L 1 1
q5 20 25 30 35 40

age

Fig. 4 Trends in fertility rates from the calibrated fitted model correspond closely to those estimated from India’s National Family Health Survey.
Cumulative fertility rates in India among urban women in (@) 1993, (b) 1999, and (c) 2006, and for rural women in (d) 1993, (e) 1999, and (f) 2006
showing model fits red with 95 % confidence intervals, and data as blue dots. Disaggregated data and model fits by age, birth cohort, urban/rural
residence, and educational attainment are provided in Additional file 1: SI Figure AF2. Fertility data were fitted using the Gompertz-Pasupuleti model
(Equation 1 in the main text)
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Fig. 5 Historical trends in mortality rates produced by the calibrated model correspond closely to rates to those reported by India’s Sample
Registration System. Models are displayed as lines against data as circles. Disaggregated mortality data by age, birth cohort, urban/rural residence,
educational attainment category, and calendar year, with 95 % confidence intervals, are provided in Additional file 1: SI Figure AF3

age

might influence modeled outcomes in important ways.
We found that including trends is important for predict-
ing population sizes that remain consistent with both
past observed data and future demographic projections
made from more complex demography models that are
not typically possible to incorporate into health policy
simulations. Specifically, we compared our model to an
equivalent static model that did not include changes in

educational attainment nor in risks of fertility, mortality,
or migration over time—a proxy for many models in the
current literature.

Figure 6 contrasts the population size predictions
from the two models, starting both in 1990 and observ-
ing their predictions through 2010. The simulations
were carried out 10,000 times through repeated sam-
pling from the parameter uncertainty distributions, and
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Fig. 6 Population models with secular trends in their risk exposure match United Nations historical data on population size more closely than
static models that do not include these trends. Historical population size estimates deviate significantly from United Nations projections (dashed
blue lines) when using a standard model (magenta) that assumes no change in demographic or socioeconomic variables over time, as compared
to our fitted model (green) that includes time trends in demographic and socioeconomic variables. Results are displayed for both (a) urban and
(b) rural females from 1990 to 2010
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show that the model incorporating demographic and
socioeconomic trends is much more likely to make pre-
dictions falling within the 95 % confidence intervals of
the data, while the current standard model was very
likely to deviate significantly from the data within the
first few years of the simulation.
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The importance of this deviation is illustrated by the fu-
ture predictions made by both models starting from the
actual population in 2010. As shown in Fig. 7, the model
without future trends is likely to overestimate future
population size, particularly for rural populations, by fail-
ing to account for educational attainment improvements

(A)

x 10° Pop size:

urban females

population

0
2010

(B)

2020 2025

year

8 Pop size: rural females

population

0 1
2010 2015

2020 2025

year

Fig. 7 Population models with secular trends in their risk exposure match United Nations future projections of population size more closely than
static models that do not include these trends. Future population size estimates deviate significantly from United Nations projections (dashed
blue lines) when using a standard model (magenta) that assumes no change in demographic or socioeconomic variables over time, as compared
to our fitted model (green) that includes time trends in demographic and socioeconomic variables. Results are displayed for both (a) urban and
(b) rural females from 2010 to 2025
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and migration trends that are associated with lower fertil-
ity and mortality rates. The overestimation is so severe
that the rural female population size estimate for the static
model moves outside the 95 % confidence intervals for
standard United Nations population estimates by the year
2015, as illustrated in Fig. 7.

Similarly, as illustrated in Fig. 8, the model without
future trends is likely to underestimate life expectancy
substantially within a few years of simulation, particularly
for rural women. This is due to the large overestimation of
mortality rates among this group in a model without
trends, as mortality has been falling over time, which
could cause a population health model to underestimate
years of life lived with disability or to underestimate the
years of life saved from public health interventions.

Explicitly considering a hypothetical intervention to
improve rural female educational attainment levels, we
compared the model without future trends to the
SPOKE-I model in terms of their predictions of incre-
mental life expectancy gains from such an intervention
(Fig. 9). When simulating the impact of a proposal to
expand primary education to all rural women in the
year 2000, the model without future trends estimated a
life expectancy benefit that was 0.8 years lower than
the dynamic model’s estimate (95 % CI: 0.2—1.4 years).
The SPOKE-I model’s estimate incorporated complex
effects: the lower mortality risks associated with higher
educational attainment, and the simultaneously higher
rate of migration to urban areas over time among rural
women with higher levels of educational attainment,
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which carries associated time-varying changes in mor-
tality risk (Table 3).

Discussion

There is increasing recognition that demographic and
socioeconomic conditions can profoundly affect popula-
tion health and that in many countries these conditions
are changing. Yet changes in such conditions are rarely
included in mathematical simulation models of popula-
tion health. Our goal in this paper was to create, valid-
ate, and “open source” a simulation modeling approach
to allow population health modelers to explicitly reflect
changing demographic and socioeconomic conditions.

Our approach allowed us to account for simultaneous,
interacting exposures experienced by individuals over
their lifetimes — in this case, exposures related to urban/
rural residence, educational attainment, and migration.
The approach also facilitated quantification of complex
correlations among demographic and socioeconomic
factors important to health, such as the relations be-
tween educational attainment, fertility, migration, and
mortality risk.

The experiments conducted in this study add import-
ant knowledge to the existing literature on population
health modeling. Numerous methods have been pro-
posed to fit increasingly complex models to empirical
data [11, 18, 37-41]; our approach focuses specifically
on estimation of exposures and trends in exposure in a
manner that is both accurate but also simple [18]. The
data fitting and calibration approach itself is not new,

601

female life expectancy

Life expectancy projections
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Fig. 8 Population models with secular trends in their risk exposure match United Nations future projections of life expectancy more closely than
static models that do not include these trends. Life expectancy projections for Indian females from 2010 to 2025 deviate significantly from United
Nations projections (dashed blue lines) when using a standard model (magenta) that assumes no change in demographic or socioeconomic
variables over time, as compared to our fitted model (green) that includes time trends in demographic and socioeconomic variables
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Fig. 9 Estimates of life expectancy gains from universal primary education interventions using population models with secular trends are
systematically and increasingly higher than from those without secular trends. Life expectancy projections for a simulated population health
intervention: the expansion of universal primary education for rural women in the year 2000. The graphs shows a “difference in differences”
projection: the incremental benefit of the education intervention according to the SPOKE-I model with demographic and socioeconomic time
trends, minus the incremental benefit of the education intervention according to the static model (which assumes no change in demographic or
socioeconomic variables over time). The y-axis reflects the difference in incremental life expectancy benefits between the two models. The dark

line reflects the median difference, and light gray lines are the 95 % confidence intervals around the result from 10,000 repeated simulations

relying on Markov Chain Monte Carlo methods that are
freely-available [42]. The key challenge we addressed here
is how to incorporate common demographic and socio-
economic data into a framework that will allow their rapid
integration into population health and health policy
models. We focused on fertility, mortality, education, and
migration data, but our approach can be expanded to
other exposures like those repeatedly documented in
demographic and health surveys [16]. Incorporating time
trends in such data allowed us to generate more accurate
population size and life expectancy projections than would
have been the case if we had relied on a classical model
assuming no change in demographic or socioeconomic
factors. Our approach was found to avert potentially ser-
ious errors in projections of population health trends. Of
note, several HIV-specific models have incorporated some
demographic parameters in the past (i.e., migration rates)
[43]. Our approach here adds to that literature by per-
mitting systematic evaluation of the importance of each
of the standard types of demographic parameters (birth
rates, death rates, education rates, migration rates), to
develop a routine approach to determining whether or
not a parameter would add value or unnecessary com-
plexity to a given model.

As with all mathematical models, our model requires as-
sumptions and associated caveats. Our goal was not to

capture all aspects of complex demographic and socioeco-
nomic factors that could influence population size, fertil-
ity, or mortality. Rather, we purposefully focused on a
model that incorporated several important factors while
remaining reasonably parsimonious. The approach is read-
ily adaptable and expandable to other modeling situations,
and we have aimed to support this by “open-sourcing” the
model code. Nevertheless, the model employed household
survey-based data. Such data can suffer from various
biases like those related to recall and self-report, which
may, for example, lead to some misclassification of educa-
tional attainment, particularly as we had to impute mortal-
ity rates by educational attainment category given the
absence of detailed mortality rates by education class in
India’s vital registration database. Nevertheless, our se-
lected model simultaneously fit multiple independent data
sources providing information on multiple population
health metrics.

Our model is less detailed than many formal models
in demography and is intended to be used over short
decadal time scales. Our goal was to bridge the gap be-
tween health policy models focused on detailed disease
natural histories and intervention delivery, and formal
demographic models that seek to provide general, very
long-range population size projections [7]. Rather than
using classical demographic modeling techniques for
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long-term population size projections, our objective was
to find key parameters that could be manipulated to
allow public health intervention simulations delivered
over 10 to 20 years, such as interventions targeting
rural-to-urban migrants, or interventions addressing low
educational attainment among rural women [21, 44].
This required modeling both population size itself (as in
the demography models) and also generating parameters
that characterize underlying factors and relationships
linked to changes in population size and mortality
(which must be manipulated to simulate interventions).
Most formal demographic models capture long-term
population trends, but do not include the underlying
factors that generate such trends.

Future research should address the question of how data
on demographic and socioeconomic conditions might be
better standardized across countries. Much of our effort
involved data gathering, cleaning, and organization as
shown in the Additional file 1: SI Tables to enable easier
entry into the model generation and comparison process.
Providing organized data in formats that allow similar
model comparisons across countries could greatly assist in
comparing interventions across low- and middle-income
countries [45]. Open databases for commonly-used data
collected at multiple time points would provide opportun-
ities to understand how social dynamics affect the vulner-
ability or resilience of different populations, particularly as
population processes such as urbanization offer highly
complex outcomes that are not intuitive to anticipate.

Conclusions

We find that incorporating demographic and socioeco-
nomic trends into mathematical models of population
health and health policy is important, as the omission of
such trends influences model-projected outcomes in com-
plex ways. Incorporating demographic and socioeconomic
trends is currently highly feasible through an “open
source” approach developed in this study, and is becoming
even more feasible as data from low- and middle-income
countries continue to become widely available.

Additional file

Additional file 1: This Additional File text provides further details
on the mathematical modeling approach described in the main
text, including model code and relevant methodological details.
(DOCX 2291 kb)
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