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Abstract 

Background:  When Service Provision Assessment (SPA) surveys on primary health service delivery are combined 
with the nationally representative household survey—Demographic and Health Survey (DHS), they can provide key 
information on the access, utilization, and equity of health service availability in low- and middle-income countries. 
However, existing linkage methods have been established only at aggregate levels due to known limitations of the 
survey datasets.

Methods:  For the linkage of two data sets at a disaggregated level, we developed a geostatistical approach where 
SPA limitations are explicitly accounted for by identifying the sites where health facilities might be present but not 
included in SPA surveys. Using the knowledge gained from SPA surveys related to the contextual information around 
facilities and their spatial structure, we made an inference on the service environment of unsampled health facilities. 
The geostatistical linkage results on the availability of health service were validated using two criteria—prediction 
accuracy and classification error. We also assessed the effect of displacement of DHS clusters on the linkage results 
using simulation.

Results:  The performance evaluation of the geostatistical linkage method, demonstrated using information on the 
general service readiness of sampled health facilities in Tanzania, showed that the proposed methods exceeded the 
performance of the existing methods in terms of both prediction accuracy and classification error. We also found that 
the geostatistical linkage methods are more robust than existing methods with respect to the displacement of DHS 
clusters.

Conclusions:  The proposed geospatial approach minimizes the methodological issues and has potential to be used 
in various public health research applications where facility and population-based data need to be combined at fine 
spatial scale.

Keywords:  Geostatistical linkage methods, Demographic and Health Survey (DHS), Service Provision Assessment 
(SPA), Misclassification error
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Background
As a part of the Demographic and Health Surveys (DHS) 
project, Service Provision Assessments (SPA) provide 

a comprehensive overview of health service delivery in 
low- and middle-income countries (LMICs). When these 
national level surveys of health facilities from SPA are 
combined with individual- or household-level surveys on 
population, fertility, family planning, reproductive health, 
child health, and nutrition [19], they can provide critical 
information to address key programmatic and targeting 
questions related to population health in LMICs [13].
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Several studies have proposed analytical methods to 
establish a link between survey respondents in household 
data (clusters from DHS) and individual facilities from 
SPA based on the Global Positioning System (GPS)-refer-
enced location information of each dataset. For example, 
Hong et  al. [11] used a nearest facility linkage method, 
Wang et al. [31, 32] and Wang et al. [33, 34] conducted 
a buffer analysis for service-environment, while others 
[28, 30] used a combination of administrative boundary 
link, Euclidean buffer link, road network link, and ker-
nel density estimates. These studies, in common, aimed 
to address key programmatic and policy questions about 
program impact and targeting related to population 
health, such as newborn health, vaccination, contracep-
tive use and access, adolescent sexual and reproductive 
health by combining these two datasets [2]. DHS has also 
been linked with additional sources of health facility data 
other than SPA in previous studies [15, 17, 23, 29] using 
geospatial linkage methods to examine outcomes includ-
ing place of delivery, antenatal care, contraceptive use, 
neonatal mortality, and newborn care.

However, existing methods were recommended for 
analyses at regional levels [2, 18, 28] due to known limita-
tions of the survey datasets, such as (1) the SPA facility 
survey includes only a subset of all health facilities in a 
country and (2) DHS clusters are intentionally displaced 
in space for privacy protection. Typically, SPA is con-
ducted as a nationally representative sample of facilities 
whose design allows calculation of sub-national estimates 
of indicators by sectors, facility level, and administra-
tive unit [3]. Only in a small number of countries has a 
facility census approach been used [32]. As documented 
elsewhere [2, 11, 28], substantial misclassification likely 
occurs if the SPA are directly linked to DHS at the clus-
ter level. For example, the linked data may underestimate 
the availability of health facilities (or access to health ser-
vices) and misclassify the nearest facility from household 
clusters [28].

To address the incompleteness of SPA in their linkage 
to DHS surveys at disaggregated levels, one can consider 
a geospatial approach based on spatial interpolation. Spa-
tial interpolation has long been used in geographic infor-
mation science (GIScience) to estimate the magnitude of 
the features at locations without data using known values 
at a number of selected locations [16, 26]. Among many 
interpolation methods, the geostatistical technique, also 
known as Kriging, is considered optimal. It supplies the 
best linear unbiased estimates, while exploiting spatial 
dependence in the phenomenon of interest [5, 6, 12].

Specifically, spatial dependence in Kriging embodies 
two types of effects [14]. The first-order effects, known as 
a trend or drift, quantify the large-scale spatial variation 
of the data over the study area. For example, high-quality 

health services are more likely available at hospitals than 
other types of health facilities. In LMICs, hospitals are 
typically located where a set of geographic, socio-eco-
nomic, and demographic conditions are optimal [1, 8]. 
Thus, we expect that a trend of health service availability 
(or quality) can be modeled based upon location-specific 
environmental characteristics. The second-order effects 
capture localized spatial structure in the data, including 
clusters of similar values or spatial autocorrelation [10]. 
The spatial autocorrelation in the data, such as the simi-
larity of health service availability of adjacent SPA facili-
ties, increases the predictive accuracy of Kriging [4] and 
potentially allows overcoming the limitations of accessing 
a sample instead of a census of health facilities. Kriging 
captures both the first-order effect and the second-order 
effect of the spatial variation of health services availability.

The effect of geographic displacement of DHS cluster 
data on their linkage of health facilities in SPA has been 
assessed primarily focusing on geospatial proximity, 
which frequently imposes over-simplified assumptions. 
For example, the administrative boundary method links 
the two data sets assuming that the boundary dominates 
a choice of health facility. Except for in a few counties 
where the health care system was built upon administra-
tive boundaries, however, administrative boundaries are 
delineated for a purpose of governing and not for deliv-
ering efficient health services. Similarly, kernel density 
or road networks are purely based only on the location 
of health facilities regardless of the physical and social/
political environments surrounding DHS clusters, such 
as the presence of water bodies or mountains. Further 
investigation of the effect of geographic displacement of 
DHS clusters is needed.

In the present study, we developed a novel geosta-
tistical approach to link health facility survey data with 
geocoded DHS clusters at a disaggregated level (i.e., the 
cluster-level). The proposed approach accounts for both 
the geographic configuration of DHS clusters and SPA 
facilities, as well as the local environmental conditions of 
the sampled health facilities in SPAs. We demonstrated 
the effectiveness of the proposed approach by estimating 
the general service readiness (SR) of each health facility 
[35] as an example and predicting the SR availability in 
any given DHS cluster. We also assessed the effect of geo-
graphic displacement of DHS cluster data using spatial 
simulation [37]. To assess the predictive model perfor-
mance, we used a unique data set of the census of health 
facilities in the two regions in Tanzania.

Methods
Study setting
There are 20 regions in mainland Tanzania and we 
focused on the two regions: Iringa and Njombe. These 
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were selected because two of the authors have extensive 
contextual knowledge of these regions. The two regions, 
located in the Southern Highlands in the southwestern 
part of the country, are comprised of multiple districts 
and town councils as shown in Fig. 1.

In mainland Tanzania, the public health care system 
is organized as follows. Primary health care services 
are the most common and comprise community-based 
health activities (disease control programs, community 

outreach, etc.), village health services (often health ser-
vices offered in home by village health workers), dispen-
saries and health centers. Dispensaries are generally run 
by a clinical assistant and can provide preventive and 
curative services, while health centers can admit patients 
and provide some surgical services planning [20]. For 
example, dispensaries provide maternal and child health 
care, treat simple medical problems during pregnancy 
such as anemia, assist with normal deliveries, and offer 

Fig. 1  The census of health facility overlaid with SPA sampled facility within the administrative boundaries of Iringa and Njombe (shaded with 
green and yellow color, respectively). The gray line denotes the boundary of districts (administrative level 2) within each region. The DHS clusters are 
denoted by red circles
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basic outpatient curative care to between 6,000 and 
10,000 people. Health centers are normally run by clini-
cal offers and serve population of approximately 50,000 
people. Health centers are intended to provide preven-
tive care, but also often have between 10 and 20 beds 
and offer reproductive health services and minor surgery. 
Clinics are another category of health facilities at the pri-
mary level which are privately owned and offer general 
and specialist examinations and outpatient treatment 
services. At the secondary level, council hospitals pro-
vide health care and medical and basic surgical services, 
while regional hospitals provide specialist medical care. 
Finally, at the tertiary level, zonal and national hospitals 
provide advanced medical care and training in medical, 
paramedical, and nursing care. The two entities jointly 
responsible for the delivery of public health services are 
the Ministry of Health and Social Welfare and the Prime 
Minister’s Office.

Data sources
Data used in the present study came from multiple and 
publicly available sources. The 2014–2015 Tanzania SPA 
Provision Assessment (TSPA) provides information on 
availability of basic and essential health care services and 
readiness to provide quality services [20]. The TSPA is 
a sample of formal-sector health facilities in Tanzania. 
The sampling frame for the survey is a master list of 7102 
facilities in Tanzania and Zanzibar, including hospitals, 
health centers, clinics, and dispensaries. These include 
government, private for-profit, parastatal, and faith-
based facilities. A total of 1200 facilities were selected for 
the survey to represent a nationally representative sample 
by facility type and managing authority. Hospitals were 
oversampled as they exist in comparatively small num-
bers. In each facility, data were collected using a facil-
ity inventory questionnaire, health provider interview, 
observation protocols, and exit interviews for antenatal 
care and family planning clients. Fieldwork was carried 
out between October 2014 and February 2015.

For the 2015–2016 Tanzania Demographic and Health 
Survey and Malaria Indicator Survey (TDHS-MIS), 
National Bureau of Statistics (NBS) carried out and 
supervised fieldwork activities, while ICF International 
provided technical assistance. Sampling was carried out 
in two stages. In the first stage, 608 clusters correspond-
ing to enumeration areas delineated for the 2012 census 
were selected. For the second stage, a complete listing of 
households in all 608 selected clusters was carried out, 
and then 22 households were randomly selected from 
each cluster, yielding a representative probability sam-
ple of 13,376 [22]. GPS data were collected at the cluster 
level, accurate to less than 15 m, although their latitude/
longitude positions were randomly displaced to ensure 

respondent confidentiality. The range of displacement in 
rural clusters is 0 to 5 km, and then 1% of clusters are dis-
placed with a range of 0 to 10 km. Data collection was 
carried out by 16 field teams across Tanzania between 
August 2015 and February 2016.

Census data on all health facilities in Tanzania were 
obtained from the Ministry of Health, Community Devel-
opment, Gender, Elderly and Children (MoHCDEC) 
website (https://​www.​moh.​go.​tz/​hfrpo​rtal). These data 
include facility name, type, ownership, and GPS coordi-
nates. Data were obtained from the website in 2019 as an 
up-to-date census of existing facilities. Census data were 
unavailable for the same year as the TSPA was sampled, 
although the yearly rate of change in health facility place-
ment is usually very low.

We sourced the gridded population data for Iringa and 
Njombe regions at 100 m spatial resolution projected for 
years of 2014 and 2015 from WorldPop database (www.​
world​pop.​org). The road network data were obtained 
from Humanitarian Data Exchange (https://​data.​humda​
ta.​org/). We classified this dataset originally derived 
from OpenStreetMap into one of the following classes: 
primary, secondary tertiary roads, and tracks. We col-
lected the elevation information from Shuttle Radar 
Topography Mission (SRTM) at the resolution of 3-arc 
sec, which was produced by National Aeronautics and 
Space Administration (NASA). We downloaded the digi-
tal elevation model (DEM) dataset from Jet Propulsion 
Laboratory (https://​www2.​jpl.​nasa.​gov/​srtm/). The land 
use product was obtained from AFRICOVER project 
(Di Gregorio & Latham, 2009), which we downloaded 
from Food and Agriculture Organization of the United 
Nations (http://​www.​fao.​org/​geone​twork/​srv/​en/​main.​
home). The land cover data originally derived from Land-
sat satellite images were regrouped into ten types of land 
uses: built area, woodland, forest, tree savannah, shrub 
land, sparse herbaceous vegetation, herbaceous crops, 
shrub crop, flooded vegetation, and water bodies.

We processed the raw data for modeling, including the 
elevation data being resampled at the spatial resolution 
of 500 m via a bilinear interpolation in Fig. 2D, and other 
datasets, such as road network in Fig.  2A, land cover 
information in Fig. 2B, and population density in Fig. 2C.

SPA data analysis of service readiness
To estimate service readiness, we were guided by WHO 
standards outlined in the Service Availability and Read-
iness Assessment Reference Manual [35]. For each 
facility, we used data from SPA to create a score sum-
marizing service readiness comprising various items 
related to its operational capacity (see Appendix A for 
details). If the facility had the specified item, we coded 
the item as 1 and 0 otherwise. Then for each dimension 

https://www.moh.go.tz/hfrportal
http://www.worldpop.org
http://www.worldpop.org
https://data.humdata.org/
https://data.humdata.org/
https://www2.jpl.nasa.gov/srtm/
http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/main.home
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(amenities, basic equipment, infection prevention, 
diagnostic capacity, and essential medicines), we cre-
ated a sub-score ranging from 0 to 1 indicating the 
average items the facility had for that dimension. Then 
we created the general service readiness (SR) score by 
averaging the sub-scores by facility and then multiply-
ing by 100. Thus, the SR score has a potential range 
from 0 to 100.

Geostatistical linkage methods and performance 
evaluation
We aimed to account for both the location-specific con-
ditions, such as elevation, land use types, and population 
density where the facility is located, as well as the spatial 
correlation among the general SR scores of health facili-
ties. We assume that health facilities in the study area share 
common geographic, socio-economic, and demographic 

Fig. 2  (A) Road networks, (B) Land uses, (C) Population density, and (D) Elevation
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characteristics that attain spatial efficiency in the spatial 
distribution of health facilities [24], given that the cost 
of developing new health facilities in LMICs is high. For 
example, both Mishra et al. [21] and Pu et al. [25] identi-
fied key factors that are important to consider for optimal 
locations for new health facilities in LMICs. They include 
the distance to the nearest health facility, population ratio, 
connection to road networks, land use type, and elevation.

We expected that the key determinants of health facility 
sites used in the present study, which were not necessarily 
exhaustive, would be shared by health facilities that were 
both included and not included in the SPA survey. Here we 
addressed the challenge of making a link based only on a 
sample data in SPA instead of a census of health facilities by 
borrowing information from the SPA sampled health facili-
ties and their surrounding environmental characteristics. 
We would also account for both the geographic proximity 
to health care facilities from prediction locations, including 
DHS clusters, and the distance between any two SPA facili-
ties. To achieve this goal, we used two kriging algorithms: 
simple kriging with varying local mean [9] and kriging with 
an external drift (also referred to as universal kriging) [4, 7, 
27, 36]. Both algorithms can represent the spatial variation 
of the general service readiness via a stochastic surface. The 
general SR of each facility was considered a regionalized 
variable whose mean varied in space and was modeled by 
a local trend, while the remaining variation not captured 
by the local trend followed a second-order stationarity 
[12]. Variogram (or covariance) characterizes the second-
order stationarity of the regionalized variable where the 
geographic proximity to health facilities can be realisti-
cally modeled. Hereafter, we use the following notation 
to explain the two kriging models: u denotes a location in 
the study area u ∈ A . The response variable, general SR, is 
denoted as Z(u) , which is viewed as a regionalized variable 
and the observed general SR scores at the 77 SPA facili-
ties [z(ui), i = 1, . . . , 77] correspond to a realization of the 
regionalized variable.

Generalized linear models for trend estimation: We esti-
mated the local trend of the general SR using a multivariate 
linear regression with covariates that summarize the physi-
cal environment, socio-economic conditions, and demo-
graphic characteristics surrounding each health facility. 
Specifically, the local trend was modeled as

where the four covariates consist of elevation x1(u) , log-
transformed population density x2(u) , road density x3(u) , 
and the distance from the location u to the nearest major 
road x4(u) . These covariates were selected based on an 
exploratory analysis where land use derived variables, 

(1)m(u) = β0 + βk

4∑

k=1

xk(u)

such as the proportions of land use types per 500 m, were 
found to be insignificant in explaining the variation of 
the general SR scores of SPA facilities. We have used the 
four variables for both the model fit and the prediction: 
a linear model was fitted at SPA facility sites to estimate 
the local trend and prediction was made over a grid with 
a cell size 500 m imposed on the study area. We expect 
that the local trend model in Eq. (1) predict high general 
SR score at locations when a similar set of physical condi-
tions are met, and thus overcome the challenges of using 
a subset of health facility data.

Estimating spatial structure via variogram analy-
sis: The variogram analysis was performed using the 
residuals of the general SR scores obtained at SPA health 
facility sites. The residual values were computed by sub-
tracting the trend estimate from the general SR scores as 
r(ui) = z(ui)− m̂SK (ui), i = 1, . . . , 77 . In variogram, the 
spatial variation of general SR scores depends only on the 
relative locations of health facilities. That is, the similarities 
of general SR scores of two health facilities vary as a func-
tion of their distance regardless their absolute locations: if 
a pair of health facilities are away from each other, their SR 
scores likely to differ, but their SR scores are similar if they 
are close together.

Spatial prediction of general service readiness: Under 
the model decision of second-order stationarity, the mean 
of the general SR does not depend on the location and it 
represents global information shared to all unsampled 
locations. In the simple kriging with varying local means 
(SKLM), we replaced the mean m by known varying means 
m̂SK (u) to account for the set of covariates available at each 
location, which led to the following form of the simple krig-
ing with varying local mean estimator ẐSKlm(u):

where �
SK
i (u) denotes the kriging weight assigned 

to the general SR score at the i-th health facility in 
the SPA survey. The varying means m̂SK (u) was esti-
mated using a generalized linear models with a Gauss-
ian distribution assumption in the present work. The 
residual values at locations (grid cells imposed on the 
study region) were estimated using the simple kriging 
with varying local means estimator with the residual 
data r(ui), i = 1, . . . , 77 . The final estimate of general 
SR scores were obtained by adding the trend estimate 
m̂SK (u) to the SK estimates of the residual r̂(u).

Kriging with an external drift (KED) is similar to krig-
ing with the simple kriging with varying local means in 
Eq. (2) in that the trend is modeled as a linear function 
of a smoothly varying auxiliary variables, but it is dif-
ferent because the mean m(u) is not estimated through 

(2)

ẐSKlm(u)− m̂SK (u) =

77∑

i=1

�
SK
i (u)[Z(ui)− m̂SK (ui)]



Page 7 of 14Yoo et al. Popul Health Metrics           (2021) 19:42 	

a regression process prior to the kriging of Z. The KED 
estimator is

The kriging weights �KEDi (u) are the solution of the fol-
lowing system of (77+5) linear equations

where the trend m(u) is modeled as a linear function of 
smoothly varying variables, the covariance function of 
separation vector between any pair of residuals estimated 
at SPA facility sites CR(ui − uj) , and the covariance of a 
pair of facility in the survey and the prediction location 
CR(ui − u) . The four covariates xk , k = 1, . . . , 4 denote 
the elevation, log-transformed population density, road 
density, and the distance to the nearest road, respectively.

Statistical Calibration: In both the local trend esti-
mation and kriging models, some model predictions 
exceeded the range of general SR scores. Although it is 
possible that some dispensaries may have a lower or 
higher general SR score than measured values in the SPA 
facility survey, any model prediction outside the range of 
0 and 100 is unacceptable. To avoid these spurious results 
and rectify a systematic bias if present, we performed a 
stochastic calibration using a subset of the census data, 
which hereafter referred to as testing sites. Note that the 
census data contain the locational information of com-
plete health facilities in the study area, although their 
SR scores are unavailable except at SPA facility sites. 
However, the information on the facility type—Hospital, 
Health Center, Dispensary, and Clinic—was known at all 

(3)ẐKED(u) =

77∑

i=1

�
KED
i (u)Z(ui).

(4)

77∑

j=1

�
KED
j (u)CR(ui − uj)+

4∑

k=0

µKED
k (u)xk(ui)

= CR(ui − u) i = 1, . . . , 77

(5)

77∑

j=1

�
KED
j (u) = 1

77∑

j=1

�
KED
j (u)x1(uj) = x1(u)

77∑

j=1

�
KED
j (u)x2(uj) = x2(u)

77∑

j=1

�
KED
j (u)x3(uj) = x3(u)

77∑

j=1

�
KED
j (u)x4(uj) = x4(u)

health facilities registered in the census data. We created 
testing sites as a subset of the census data by applying a 
criterion based on the geographic proximity to the same 
type of facilities in SPA sample. Here, we assumed that 
two adjacent health facilities that were classified as the 
same type of health facility likely shared equivalent or 
similar general SR scores.

To operationalize this concept, we first examined each 
facility in the census if there was a SPA facility of the 
same type located within 5 km. If so, the facility in the 
census data would be included in the ‘testing sites’ and 
we assigned the general SR score of the nearest SPA facil-
ity to the testing site. Here we limited the search radius 
of the nearest same type SPA facility within 5 km based 
on a sensitivity analysis (see Appendix B for details). We 
examined the correlation between a pair of the same 
type of two nearest SPA health facilities’ SR scores with 
respect to a maximum search range, which are summa-
rized in Table 4.

In the second step, we extracted predicted values at 
testing sites from a local trend model, SKLM, and KED 
models. Based on both the modeled and reference values 
at the testing sites, we developed a simple linear model 
to minimize the gap between model predictions and ref-
erence values. The fitted model was used to calibrate the 
model predictions across the study area.

Performance Evaluation of Linkage Methods: We evalu-
ated the performance of the geostatistical linkage meth-
ods using the census of health facilities. Because general 
SR scores were available only at the subset of the census 
(77 facilities included in SPA), we could not directly use 
the census data in the evaluation. Instead, we used the 
information on the facility type as a proxy variable and 
quantified two evaluation metrics: (1) the prediction 
error at a subset of the census health facilities, i.e., test-
ing sites identified in the calibration; (2) the classification 
error per facility type over the census of health facilities.

To calculate prediction error of the three algorithms of 
a generalized linear regression model, SKLM, and KED, 
we fitted the models with SPA data and obtained the pre-
dicted SR scores at testing sites. We also estimated gen-
eral SR scores at testing sites using three commonly used 
linkage methods: administrative boundary link, Euclid-
ean buffer link, and kernel density estimation methods. 
The details of the three linkage methods can be found in 
Skiles et al. [28], but we linked the two data sets within a 
district boundary (i.e., the administrative level 2 mapped 
in Fig.  1) for the administrative boundary link, and we 
created a 5 km buffer zone at each facility in testing sites 
for Euclidean buffer link. Lastly, the kernel density was 
created at a grid with cell size of 500 m using general SR 
scores of SPA data as a density variable. We calculated the 
absolute mean prediction error by taking the differences 
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between linkage method specific predictions and refer-
ence values at testing sites and summarized them by cal-
culating their mean.

For the classification error, we assessed if the predicted 
general SR score at each health facility is within the facil-
ity type specific range of general SR scores inferred from 
SPA. For each health facility in the census, we compared 
the general SR score predictions obtained from differ-
ent linkage methods with the corresponding lower and 
upper bounds specific to the facility type. The compari-
son results were quantified as classification error across 
all the 563 health facility sites. If a model predicts a gen-
eral SR score that is within the range of lower and upper 
bounds per facility type in Table  2, a value of 1 was 
assigned and 0, otherwise. We conducted this evaluation 
across all health facilities and computed the total success 
rate (0 to 100%) for each model.

The effects of DHS cluster displacement on the linkage
Based on the proposed geostatistical linkage approach, 
we estimated the general SR at 40 DHS clusters. Under 
the consideration of the displacement each DHS cluster, 
we generated 100 sets of alternative and equally probable 
cluster locations. We simulated locations that are within 
5 km for urban clusters and 10 km for rural clusters [2]. 
At each simulated DHS cluster, we estimated the general 
SR scores from the geostatistical methods and quantified 
their variability originating from the displacement. For 
the purpose of comparison, we also computed the gen-
eral SR scores at the simulated cluster locations using 
other traditional methods and compared the absolute 
differences with the proposed geostatistical methods, as 
well as the variability.

All statistical analysis was conducted with R software 
(version 4.0.2) using glm for a trend estimation, gstat 
package for variogram modeling and spatial prediction, 
and ks package for kernel density estimation.

Results
Spatial distribution of health facilities
A total of 563 health facilities operated in the study 
region in 2019 that consist of 20 Hospitals (3.6%), 62 
Health centers (11.0%), 10 Clinics (1.8%), and 471 Dis-
pensaries (83.6%). In the SPA facility survey of 2014–
2015, about 13.7% (n = 77) of these health facilities were 
selected, including 18 Hospitals (23.4%), 25 Health cent-
ers (32.5%), 2 Clinics (2.6%), and 32 Dispensaries (41.6%). 
As shown in Table  1, the difference between the SPA 
(sample) and census is substantial (77 versus 563 facili-
ties) and the ratio of sample to census is substantially dif-
ferent per type of service they provide. For example, 18 
hospitals were included in SPA survey out of a total of 20 
hospitals in the study region (close to 90%), whereas only 

32 out of a total of 471 Dispensaries (6.79%) are included 
in the SPA survey.

The overall mean of the general SR of the SPA sampled 
facilities was 61.44 (57.71–65.17)1 with a standard devi-
ation of 16.71. The range of SR scores varied by facility 
type as summarized in Table 2, although some of facility 
scores were similar to those of other types. It is clear that 
Hospitals had the highest scores (mean of 82.55 and SD 
of 7.23) and Dispensaries had the lowest scores (mean of 
47.15 with SD 9.47) among the four facility types present 
in the study area. Specifically, the scores of Dispensaries 
were in the range of 29.15 and 68.83, whereas those of 
Hospital were in the range of 68.86 and 92.73. The low-
est value of Hospital was higher than the maximum value 
of Dispensary. However, both the general SR of Clinics 
and that of Health centers overlapped with both Hospi-
tals and Dispensaries. Overall, the scores of Health center 
(mean of 64.46) were similar to the mean (62.42) of gen-
eral SR scores of Clinics.

A total of 98 facilities were included in the testing sites 
that have at least one SPA facility of the same type located 
within 5 km. The testing sites consist of 17 Hospitals, 
29 Health centers, 2 Clinics, and 50 Dispensaries. Their 
reference values for general SR scores were in the range 
of 29.15 and 92.73 with the mean of 60.01 and standard 
deviation 16.15. By design, 77 facilities in the testing sites 
are from SPA.

Geostatistical linkage
We developed a multivariate linear regression model for a 
local trend estimation and the regression results are sum-
marized in Table 3. Both the population density and road 

Table 1  The number of facilities of each type in SPA and Census

Hospital Health center Clinic Dispensary Total

SPA 18 25 2 32 77

Census 20 62 10 471 563

Table 2  The range of general service readiness scores per health 
facility type

*SD: Standard Deviation

Facility Type (Minimum, Maximum) Mean SD

Hospital (68.86, 92.73) 82.55 7.23

Health center (42.44, 80.27) 64.46 10.18

Clinic (50.92, 73.91) 62.42 16.25

Dispensary (29.15, 68.83) 47.15 9.47

1  95% confidence intervals.



Page 9 of 14Yoo et al. Popul Health Metrics           (2021) 19:42 	

density around the health facility have a positive and sta-
tistically significant association with the score, whereas 
both elevation and distance to major roads are negative 
and insignificant. The regression model fit is presented in 
Fig. 3A where the general SR scores are plotted with the 
corresponding local trend estimates.

The spatial correlations between general SR scores were 
modeled using the variogram of residuals obtained at 
the SPA sites. The resulting experimental variogram and 
its optimal model fit are presented in Fig. 3B, which are 
summarized by an exponential variogram model with a 
range 1428 m and the partial sill 180 with a nugget effect 
of 70.

Based on the variogram model, we generated surfaces 
of predicted SR scores using two geostatistical prediction 
models. In addition, we created a surface of local trend 
that is solely based on a regression model as a baseline. 
The resulting prediction surfaces are shown in Fig.  4, 
where the lighter colors representing higher scores of the 

general SR were reproduced along the existing road net-
works and the villages with high population density. In 
comparison to SKLM in Fig. 4A, the KED predictions in 
Fig. 4B revealed the presence of local variations along the 
road networks. The SR scores in the top left corner of the 
study region are the lowest, where population is sparse as 
shown in Fig. 2C. It is also worth noting that some pre-
dicted scores from both SKLM and KED predictions are 
beyond the range of the original scores. To address this 
issue, we conducted the statistical calibration.

Evaluation of geostatistical linkages
Fig. 5 presents the scatter plots of the prediction versus 
reference values at testing sites. The results show that 
SKLM yield the smallest mean prediction error of 6.20, 
followed by KED (6.67). The local trend model estimated 
by a multivariate regression showed the poorest perfor-
mance (10.40) among the three models. The mean pre-
diction error of administrative boundary, buffer, and 
kernel density link was 11.91, 2.17, and 12.62, respec-
tively, where the buffer link resulted in the minimum pre-
diction error among all five methods.

In terms of classification error, SKLM yielded the 
highest success rate of 79% (classification error of 0.21), 
closely followed by the regression model (78%) and 
KED model of 77%. Among the three existing methods, 
their performance varies substantially with the admin-
istrative boundary model having a 69% of success rate, 

Table 3  Regression results

Estimate Std. Error t value Pr(> |t|)

(Intercept) 63.94 6.88 9.29 0.00

Elevation − 0.00 0.00 − 0.50 0.62

Log(pop.den) 4.35 1.10 3.95 0.00

Road.density 4.57 1.77 2.58 0.01

Distance to Roads (km) − 0.34 0.51 − 0.67 0.50
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Fig. 3  The regression for local trend (A) and semivariogram (B) of general service readiness (SR) with the model fitted
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kernel density estimation 47 % and buffering method 
31%, respectively.

The effect of DHS cluster displacement on the linkage 
results
The effect of the cluster displacement on the estima-
tion of general SR scores varies per DHS cluster, with 

the averages for SKLM and KED were 51.97 and 51.12, 
respectively. Meanwhile, the variability of these esti-
mated scores, quantified by standard deviation, ranges 
from 2.99 to 13.44 for SKLM and 3.54 to 13.52 for KED. 
More substantial differences were found in comparison 
to the existing methods of administrative boundary, buff-
ering, and KDE. We presented the variability of general 
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SR scores at each DHS cluster obtained from two geo-
statistical methods (SKLM and KED) and administrative 
boundary method using a boxplot in Fig. 6. The estimates 
from two geostatistical linkage methods were invariant 
across all DHS clusters, although the variability of the 
estimated scores rising from the positional uncertainty 
varied per cluster. It is noticeable, meanwhile, that the 
administrative boundary linkage method was less sen-
sitive to the displacement except for a few clusters, but 
yielded higher scores than geostatistical linkage methods.

Discussion
We developed a geostatistical approach to link SPA and 
DHS datasets at a disaggregated level (i.e., the cluster-
level), and presented the application of the proposed 
linkage methods using data from Tanzania. The proposed 
geostatistical linkage methods utilize the information on 
the spatial configuration of DHS clusters and SPA facili-
ties similar to existing geospatial linkage methods, such 
as administrative boundary, buffering distance, and ker-
nel density estimation, but our method is an improve-
ment upon these. Specifically, the proposed linkage 
method explicitly accounts for the geographic, socio-
economic, and demographic conditions of and around 
sampled health facilities in SPA as well as their spatial 
autocorrelations. They are critical to reducing the mis-
classification error introduced when SPA survey is linked 
to DHS clusters, given the SPA is typically conducted as 
a nationally representative sample of facilities except in 
a small number of countries where they have conducted 
a census of all facilities [32]. The knowledge gained from 
the spatial analysis of the SPA sample and its surrounding 

environments allows us to identify key determinants of 
existing health facility sites and to infer the locations of 
health facilities that are not sampled within SPA surveys. 
Consequently, it enables us to apply the proposed linkage 
approach to SPA surveys and DHS data at cluster levels 
while minimizing misclassification error.

In our investigation of the effect of geographic dis-
placement of DHS cluster data on the linkage, we con-
cluded that geographic displacement may lead to a biased 
link between the health service environment and popu-
lation, as shown in the wide range of box lengths across 
DHS clusters of Fig. 6. However, the results also suggest 
that the effect of geographic displacement is relatively 
small in comparison to the uncertainty in the estimated 
service readiness due to the linkage methods used (i.e., 
geostatistical linkage method vs. administrative bound-
ary method).

It is worth noting that proposed linkage methods are 
flexible and can be replicated with other service readi-
ness or health indicators and in different settings. As key 
determinants for optimal health facility sites likely differ 
per region or country, it is necessary to modify the pro-
posed multi-step geostatistical model to accommodate 
both the regional characteristics and the data availabil-
ity. Many countries are at risk of not achieving the tar-
gets of the Sustainable Development Goal (SDG) 3 (to 
ensure healthy lives and promote wellbeing for all at all 
ages), because they continue to face challenges related to 
health services delivery and access. In order to improve 
service delivery and simultaneously, health outcomes and 
equity, a better understanding of how the health service 
delivery environment influences service utilization is 
needed. A first step in this involves linking health-sector 
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and individual-level data for further analysis. As demon-
strated using the data from two regions in Tanzania, our 
methods can contribute to better understanding of ser-
vice utilization from an ecological perspective, but at a 
more local level, helping countries identify factors asso-
ciated with the provision and utilization of services and 
address gaps to achieve SDG 3.

However, the proposed geostatistical approaches 
should be applied with caution when the SPA consists 
of small number of facilities. Empirical variograms con-
structed from small samples likely are unreliable and 
incapable of inferring underlying spatial structures of 
the process, which could consequently yield biased and 
inaccurate predictions. To avoid spurious results, we rec-
ommend to linking DHS data to SPA surveys at a disag-
gregated level only when a sufficient number of facilities 
are included in the SPA. Similarly, caution is required 
when interpreting the performance evaluation reported 
in the present study. Due to the absence of validation 
data, we created testing sites that include all SPA facili-
ties and utilized their general SR scores in both model 
fitting and validation. Consequently, the linkage method 
based on buffering showed the best performance in the 
prediction error but the worst in classification error. This 
inconsistent finding suggested that the model perfor-
mance evaluation was sensitive to the choice of valida-
tion data.

The current study has several strengths, including use 
of representative data; applicability of linkage meth-
ods to disaggregated levels unlike existing studies; use 
of rich data on population density, road networks, land 
use, and quality of services offered in health facilities; and 
potential for replication with other data nationally and in 
other settings. Nevertheless, the study has some limita-
tions. First, we lack information on service readiness for 
facilities in the census. The SPA survey takes about 14% 
(77 sites out of 563) of the health facilities present in the 
study area. Potentially, the small sample size may have 
biased the inference of the spatial structure of the under-
lying process. Second, when the proposed approach is 
applied to a large study area, the stationarity assumption 
imposed on the relatively small study region has to be 
reevaluated. If the assumptions cannot be met, an alter-
native approach, including the division of study area to 
homogeneous regions, should be considered. Similarly, 
the spatial resolution of the prediction may affect the per-
formance of the model. It should be also noted that the 
four covariates used for the present study are not exhaus-
tive and may need revision when the proposed methods 
are applied to other regions. Finally, our SR information 
is based on general services. The readiness and availabil-
ity of services may vary within a facility based on type of 
services being offered (e.g., family planning, vaccinations, 

delivery services). In this general exercise, we had limited 
our analysis to general SR to demonstrate the feasibility 
of our method.

In future research, the proposed linkage methods can 
be further improved by adopting sophisticated statisti-
cal methods and data mining techniques in combination 
with geostatistics. We also expect that a hybrid approach 
that involves both machine learning and geostatistics is 
applicable for different health service environments at 
regional and national levels. Lastly, we expect that the 
information on the access, utilization, and quality of 
health service estimated at DHS clusters will be used to 
assess the population health outcomes, including health 
status, health care-seeking behaviors, and policy ques-
tions about program impact and targeting related to pop-
ulation health.

Conclusions
We developed a flexible approach for linking SPA and 
DHS data at a disaggregated level (i.e., the cluster-level), 
improving upon the limitations of existing linkage meth-
ods which are only applicable at regional scales. These 
linked data can be used to improve understanding of how 
the service delivery environment influences utilization of 
services, and subsequently health outcomes, at the indi-
vidual-level for myriad health domains (child nutrition, 
vaccinations, fertility, sexual and reproductive health, 
etc.). This approach can be adapted with other health ser-
vices indicators and in other settings. Thus, the contribu-
tion of the current study can help identify gaps in service 
provision to inform programming and policy in various 
settings. This improved knowledge can help countries 
improve health outcomes for their populations, improve 
equity, and achieve SDG 3.

Appendix A: Analysis of SPA data: general service 
readiness
For each facility, we used data from SPA to create a score 
summarizing service readiness comprising items related 
to amenities (power, improved water source, privacy, 
sanitation, communication, computer, emergency trans-
portation), basic equipment (adult scale, child scale, 
thermometer, stethoscope, blood pressure apparatus, 
and light source); infection prevention (safe disposal of 
sharps, safe final disposal of infectious wastes, appropri-
ate storage of sharps waste, appropriate storage of infec-
tious waste, disinfectant, single use standard disposable 
or auto-disable syringes, soap and running water or alco-
hol based hand rub, latex gloves, guidelines for standard 
precautions); diagnostic capacity (hemoglobin, blood 
glucose, malaria, urine dipstick for protein, urine dip-
stick for glucose, HIV, syphilis rapid test, urine test for 
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pregnancy); essential medicines (amlodipine tablet/cal-
cium channel blocker, amoxicillin syrup/suspension or 
dispersible tablet, amoxicillin tablet, ampicillin power for 
injection, aspirin, beclomethasone, inhaler, beta blocker, 
arbamazepine tablet, ceftriaxone injection—second line 
injectable antibiotic, diazepam injection, enalapril tablet 
or ACE inhibitor, fluoxetine tablet, gentamicin injection, 
glibenclamide tablet, haloperidol tablet, insulin regular 
injection, magnesium sulfate injectable, metformin tab-
let, omeprazole tablet/pantoprazole, rabeprazole, oral 
rehydration solution, oxytocin injection, salbutamol 
inhalers, imvastatin tablet or other statin, thiazide, zinc 
sulfate tablets).

Appendix B: Sensitivity analyses
We assessed the sensitivity of the assumption imposed by 
testing sites by examining a pair of SPA facilities of the 
same type with respect to their general SR scores and 
the separation distance. Depending the type of facility, a 
pair of facilities of the same type might be further apart 
and the physical distance may invalidate the assumption. 
Thus, we considered a maximum search distance and cal-
culated the correlation coefficients between the general 
SR scores of selected pairs that are the same type and 
located within the maximum distance. If more than one 
facility of the same type is found within the search radius, 
we selected the nearest one. The results are summarized 
in Table 4 and it showed that as a maximum search dis-
tance increases, the correlation between the general SR 
scores of the pairs decreases and the total number of 
pairs selected increases. We have chosen 5000 m in the 
present study under the consideration of both the num-
ber of pairs of the facilities (the size of testing sites) and 
the correlation coefficients.
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