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Abstract 

Background:  The HIV/AIDS pandemic has had a very devastating impact at a global level, with the Eastern and 
Southern African region being the hardest hit. The considerable geographical variation in the pandemic means 
varying impact of the disease in different settings, requiring differentiated interventions. While information on the 
prevalence of HIV at regional and national levels is readily available, the burden of the disease at smaller area levels, 
where health services are organized and delivered, is not well documented. This affects the targeting of HIV resources. 
There is need, therefore, for studies to estimate HIV prevalence at appropriate levels to improve HIV-related planning 
and resource allocation.

Methods:  We estimated the district-level prevalence of HIV using Small-Area Estimation (SAE) technique by utilizing 
the 2016 Zambia Population-Based HIV Impact Assessment Survey (ZAMPHIA) data and auxiliary data from the 2010 
Zambian Census of Population and Housing and the HIV sentinel surveillance data from selected antenatal care clinics 
(ANC). SAE models were fitted in R Programming to ascertain the best HIV predicting model. We then used the Fay–
Herriot (FH) model to obtain weighted, more precise and reliable HIV prevalence for all the districts.

Results:  The results revealed variations in the district HIV prevalence in Zambia, with the prevalence ranging from 
as low as 4.2% to as high as 23.5%. Approximately 32% of the districts (n = 24) had HIV prevalence above the national 
average, with one district having almost twice as much prevalence as the national level. Some rural districts have very 
high HIV prevalence rates.

Conclusions:  HIV prevalence in Zambian is highest in districts located near international borders, along the main 
transit routes and adjacent to other districts with very high prevalence. The variations in the burden of HIV across dis-
tricts in Zambia point to the need for a differentiated approach in HIV programming within the country. HIV resources 
need to be prioritized toward districts with high population mobility.
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Background
The HIV/AIDS pandemic has continued to be a global 
public health problem, with an estimated 38 million 
people globally living with HIV in 2019 and the African 
region bearing the largest burden of the global HIV/AIDS 

cases [1]. Interestingly, the burden of HIV varies con-
siderably within Africa, with sub-Saharan Africa alone 
accounting for about 70% of all global HIV cases in SSA 
[2]. However, a closer review of HIV in the SSA region 
reveals that the burden is mainly in Eastern and Southern 
African region (ESA) where, with only 6.2% of the world 
population, the ESA region accounted for approximately 
54% of the total global HIV infections and 43% of all 
AIDS-related deaths in 2019 [1]. There is substantial vari-
ation in the distribution of HIV within the ESA region. 
For instance, of the 24 countries in this region, more than 
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a quarter of the new HIV infections in 2018 were in South 
Africa, while 50% of infections were in 7 other countries, 
namely, and in order of magnitude, Mozambique, Tanza-
nia, Uganda, Zambia, Kenya, Malawi and Zimbabwe [3].

Similarly, the distribution of HIV within countries has 
been shown to vary remarkably. In Zambia, for instance, 
some provinces such as Lusaka (16.1%), Western (16%) 
and Copperbelt (14.2%) have relatively high prevalence 
compared to provinces like North-western (6.9%) and 
Muchinga (5.9%) (ZAMPHIA, 2016). This trend is similar 
for South Africa where the burden of HIV among adult 
South Africans in 2016 ranged from as low as 12.6% in 
Western Cape to as high as 27% in Kwazulu-Natal (KZN) 
[4].

The information on the geographical variation in HIV 
prevalence at provincial level is certainly important for 
guiding government policy, prioritization of interven-
tions and resource allocation both across and within 
countries. It should, however, be noted that the burden 
of diseases within the provinces can be heterogeneous. 
For example, within KZN province in South Africa, the 
available district-specific HIV prevalence in 2016 ranged 
from 16.1% in ILembe to 20.6% in uMgungundlovu [5]. 
Similarly, a study that modeled district-level estimates for 
HIV prevalence in South Africa found variations in the 
prevalence within the South African provinces [6]. This 
means that effective preventive and control strategies to 
combat HIV require knowledge of the burden of the dis-
ease at smaller and more similar areas such as districts 
[7]. This is challenging, however, because most data cur-
rently in use are not sufficiently powered to provide relia-
ble estimates at the small-area levels such as districts [7].

The Zambian Ministry of Health acknowledges the 
importance of district-level estimates for more focused 
approaches in HIV programming and in facilitating the 
achievement of the Fast Track targets [8]. These targets 
are a set of 10 global guidelines for countries to adopt and 
implement in order to end the HIV pandemic by 2030 
through ensuring, among other things, zero new HIV 
infections, zero discrimination and zero AIDS-related 
deaths. The Zambian MoH also acknowledges the impor-
tance of district-level HIV estimates in the achievement 
of these targets in an equitable manner. However, infor-
mation on the prevalence of HIV at the district level is 
very limited and the MoH’s Fast Track strategies are 
unlikely to be realized. Currently, existing districts esti-
mates for HIV in Zambia are from routine health facility 
data which cannot be generalized to the general popu-
lation due to the non-random nature of the people that 
present to test for HIV [9]. This problem can only be 
remedied with the use of robust techniques, such as SAE 
methods, designed to provide valid estimates of the bur-
den of HIV at district level.

District-level HIV statistics are of particular impor-
tance for Zambia because, a district is the lowest level 
of decentralization where health services are organized 
and delivered [10]. A previous study by Dwyer-Lind-
gren et  al. [11] produced HIV prevalence estimates at a 
5 × 5  km pixel resolution for countries in sub-Saharan 
Africa, including Zambia, which can be aggregated to the 
district level. However, the Dwyer-Lindgren et al. model 
is very computationally intensive, and not specifically 
tailored for Zambia. Our study, on the other hand, uses 
novel methodology that are specifically tailored for Zam-
bia and can easily be replicated in other country-specific 
contexts.

Methods
The district HIV prevalence was estimated using Small-
Area Estimation (SAE) methods by utilizing multiple data 
sources. The SAE method is a statistical technique for 
obtaining reliable statistics for small areas that are mostly 
underrepresented in existing data sources due to small 
sample sizes. Using both direct and indirect methods, 
SAE models combine multiple data sources (censuses, 
surveys, etc.) containing other related information—aux-
iliary data—for these small areas [12].

Put simply, small-area estimates for HIV prevalence 
are a weighted average of the direct prevalence estimate 
from existing data which, due to sample size, may be too 
unreliable, and therefore requiring a statistical model that 
utilizes auxiliary data from outside the survey to improve 
the estimates [13]. More weight is placed on the  pre-
dicted prevalence if the variance of the direct prevalence 
is high, and vice versa [6].

Data sources
The outcome variable was HIV prevalence—obtained 
from the ZAMPHIA of 2016, while auxiliary predictors 
included HIV prevalence among pregnant women, the 
2010 Zambian population; proportion of the population 
aged 15–36 years; dependence ratio (the ratio of popula-
tion aged 0–14 years and persons aged 65 years and older 
per 100 persons in the working age group 15–64  years 
old [14]); the proportion of the population in formal 
dwelling; proportion of the population with higher edu-
cation attainment; proportion of the population residing 
in the urban area, population density and the proportion 
of females in the population. Data on HIV prevalence 
among pregnant women were obtained from selected 
ANC facilities in the 74 districts in 2017 and 2018, while 
the rest of the auxiliary predictors were obtained from 
the 2010 Census of Population and Housing for Zambia.

The ZAMPHIA is a nationally representative cross-
sectional, population-based survey of households across 
Zambia, aimed at measuring the status of Zambia’s 
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national HIV response [15]. The 2016 ZAMPHIA used 
a two-stage stratified cluster sampling. The first stage 
selected 511 enumeration areas (EAs) using probabil-
ity proportional to size method, and the second stage 
selected an average of 27 households per EA using equal 
probability method. A total of 13,441 households and 
28,142 individuals were sampled for the survey; 19,168 
were adults aged 15–59  years, and 8974 were children 
aged 0 to 14  years. Those aged 15–59  years received 
home-based counselling and testing for HIV. Additional 
information on the ZAMPHIA methodology is provided 
in the ZAMPHIA report [15].

Our study and the Dwyer-Lindgren study, alluded to 
earlier, have similar data sources, with both studies hav-
ing utilized the ZAMPHIA and the ANC sentinel sur-
veillance data, for HIV seroprevalence estimates and 
HIV prevalence among pregnant women, respectively. 
However, in addition to the above sources, the Dwyer-
Lindgren study also uses the Zambia Demographic and 
Health Survey (ZDHS) for HIV seroprevalence estimates, 
while our study uses the Zambia 2010 Census of Popu-
lation and Housing to obtain additional auxiliary predic-
tors for HIV. Both studies offer very useful insights for 
better targeting of HIV resources at district level and 
facilitating the achievement of the Ministry of Health’s 
strategic HIV goals.

Variable description
HIV prevalence is the number of HIV positive cases 
per 100 people tested for HIV in the ZAMPHIA and in 
the selected ANC clinics dotted across all the district. 
According to the 2010 Census of Population and Hous-
ing [14], population density is the total number of per-
sons per square kilometer; proportion of urban area is 
the area considered to be urban out of the total area of 
the district; formal dwelling is defined as a room/set of 
rooms in a permanent building that could be structurally 
separated from a permanent building; dependence ratio 
is the ratio of the economically inactive persons to a 100 
economically active persons; and higher education is the 
proportion of the population that have attained tertiary 
education.

Statistical models
This study used the SAE technique to model and estimate 
HIV prevalence in Zambia, adapting methods from a simi-
lar study in South Africa [6]. Note that the outcome variable 
entered the modeling framework as a logit transformation 
of the direct district HIV prevalence from the ZAMPHIA 
survey. The ANC HIV prevalence rate was also modeled 
as a logit transformation. The HIV prevalence rates are 
the direct domain estimates of the Zambian district-level 
HIV prevalence proportions from the ZAMPHIA survey, 

while the ANC HIV prevalence rates are the prevalence 
proportions among pregnant women who obtained ante-
natal care services from clinics dotted across the various 
districts in Zambia. The logit transformation was neces-
sary for converting prevalence proportions to the real line 
which helps in ascertaining the normality assumption test. 
Similarly, sampling error variance was estimated as Delta-
method approximation using the variances of the domain 
estimates as reported and elaborated elsewhere [5]. The 
model estimated the true HIV prevalence by combining 
the direct estimate (i.e., direct methods estimation) from 
the ZAMPHIA survey and the indirect model-based esti-
mates, based on auxiliary predictors and the spatial cor-
relation effects meant to improve the model prediction by 
borrowing strength from across the districts [6]. The direct 
estimate of HIV prevalence, yi for district i, was obtained 
as a weighted mean district-specific HIV prevalence from 
the ZAMPHIA survey. This estimate can be viewed to be 
as follows:

where yi is the HIV prevalence estimate for district i esti-
mated from the survey data; �i is the district’s true HIV 
prevalence being estimated; and εi is the random error 
with mean 0 and variance σ 2

i  and is assumed to be nor-
mally distributed.

However, since the number of respondents sampled at 
district level, during the ZAMPHIA, is not sufficient to 
provide reliable district HIV prevalence estimates, the sec-
ond part of the model, referred to as indirect method, was 
estimated to improve the reliability of the estimates. There-
fore, in addition to the direct prevalence estimates obtained 
from ZAMPHIA, the indirect method used auxiliary infor-
mation from within the district and neighboring districts, 
and other data sources to borrow strength and improve the 
precision of the HIV prevalence estimates [16]. Since the 
outcome variable was a logit transformation of HIV preva-
lence, we assumed that HIV prevalence is a linear function 
of covariates or HIV risk factors obtained from auxiliary 
data [6]. The true HIV prevalence ( �i in Eq. 1) can there-
fore be thought of as:

β is a set of regression coefficients obtained by regressing 
yi on HIV risk factors (xs) and vi are normally distributed 
random errors with mean 0 and variance σ 2

v  . Note that σ 2
v  

and σ 2
i  are independent of each other. Combining Eqs. 1 

and 2 gives the following mixed-effects linear regression 
model;

(1)yi = �i + εi

(2)�i = xiβ + vi

(3)yi = xiβ + vi + εi
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To improve precision of the HIV prevalence estimates 
from Eq. 3, there is need for a model that combines direct 
and indirect estimates into a single estimate, such as the 
Fay–Herriot (FH) small-area estimator. The FH estimator 
is a linear combination of a direct and synthetic estimator 
which reduces estimation variance in the underrepresented 
small areas and in the whole model [17]. The FH estimator 
is given by:

where γi and 1 − γi are weights for the direct estimate yi 
and the synthetic estimate, xiβ̂ , respectively, which con-
stitute the FH estimator. Note that γ is simply the ratio of 
the model error variance to the total error, i.e., σ 2

v

σ 2
v +σ 2

i

 . 
This means that if the survey-based estimates are precise, 
more weight is given to the direct estimate. Similarly, low 
precision of the survey-based estimates results in more 
weight being given to the synthetic or indirect estimate.

Spatial correlation
There is evidence that areas close to each other tend to have 
similar population dynamics, such as disease risk factors 
and disease burden [18]. This highlights the importance 
of location and geographical clustering in determining the 
spread of, and burden of disease—especially infectious dis-
eases, for areas that are in close proximity [19, 20]. A study 
in Ethiopia documented the importance of geographi-
cal clustering in determining the prevalence of HIV and 
Tuberculosis (TB) [21].

To account for this spatial correlation, we built a spa-
tial Fay–Herriot (SFH) model and tested it against a non-
spatial model to ascertain the best fitting model for this 
study. A spatial adjacency matrix (W) was built in Excel, as 
follows:

Spatial adjacency matrix (W) is an n × n matrix where n 
is the number of district in Zambia.

The diagonal entries are Wii = 0, indicating no correlation 
for district i to itself.

The off-diagonal row entries add up to 1, i.e., Wij = 1. This 
can be thought of as follows, as presented by Yakoi and 
Ando [22];

(4)yi = γiyi + (1− γi)xiβ̂

(5)w1ij =

{

1/dαij,
0

If i  = j otherwise

(6)woij = wij/

N
∑

k=1

w1ik

where dij, in Eq. (5), is the distance between districts i and 
j; α is a parameter of the distance decay (α = 0 if ij do not 
share a border, otherwise 0 < α < 1). According to Eq. (6), 
the total amount of influence that one area receives from 
other areas is fixed [22].

The data analysis was conducted in R [23] utilizing the 
SAE package built in the software [24]. Figures were pro-
duced with the ggplot2 package [25].

Model selection
We fitted a variation of basic area-level models which dif-
fered in the inclusion of auxiliary predictors and assump-
tions about the random effects. Model 1 included only 
the logit of ANC prevalence proportion  as an auxiliary 
predictor. Models 2–9 augmented model 1 with inclu-
sion of the district-level percentages of dependency ratio 
(DR), formal dwelling (Formal), high education (HE), 
land considered to be urban (Urban), district population 
(Pop), population aged between 15 and 35  years (15–
35 years), population density (PD) and female population 
(Female), respectively.

Model 10 augmented model 2 with inclusion of formal 
dwelling. Model 11 augmented model 10 with inclusion 
of higher education. Model 12 augmented model 11 with 
inclusion of urban prop. Model 13 augmented model 12 
with inclusion of pop2010. This continued until model 
15, which augmented model 14 with the inclusion of 
pop density. Model 16 augmented model 15 with female 
population.

Model 17 was reduced from model 16 by deletion of 
the logit of ANC prevalence and provides the contrast 
needed to assess the value of ANC prevalence. Models 
18–35 relaxed the assumption of independent model 
errors in models 1, 2 through to 17, respectively, with 
inclusion of a simultaneously autoregressive (SAR) spa-
tial covariance structure. Model 35 only contained the 
SAR covariance structure without any covariates. The 
spatial adjacency matrix, described earlier, accounted 
for the SAR covariance structure. Relative model perfor-
mance was assessed using the Akaike Information Cri-
terion (AIC). The AIC balances model fit against model 
complexity; smaller values of AIC indicate relatively 
better predictive ability. AIC is a dimensionless relative 
measure, and according to Gutreuter and others [6], dif-
ferences of 5 between models are customarily considered 
to be important.

District-level estimates of the burden of HIV infection 
were estimated from the best fitting model (Model 19) 
which included the logit of ANC prevalence proportion 
and dependence ratio with the SAR spatial covariance 
structure. This model was thereafter used, in combina-
tion with the survey-based HIV prevalence estimates, 
to model the prevalence of HIV in all the 74 districts of 
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Zambia. A table containing information on the fitted 
models has been included as an appendix (See Additional 
file 1).

Note that there are other models that can be used to 
account for autocorrelation effect, such as the conditional 
autoregressive (CAR) model, and its intrinsic version 
(intrinsic autoregressive [IAR] model), and the decision 
to use SAR is because these models are equivalent and in 
practice produce similar results [26, 27].

Note that there are differences in the modeling 
approaches between our study and the comparable study 
by Dwyer-Lindgren and others [11]. Our study was based 
on small-area estimation process, while the Dwyer-Lind-
gren study focuses on estimating the sub-national varia-
tion of HIV prevalence using within-country variation at 
a 5 × 5-km resolution. Further, the paper reported use of 
a cross-walking model to link disparate data sources that 
leveraged existing microdata and linear regression esti-
mates. Use of k-means clustering to generate a reduced 
set of locations based on the centroid of each  k-means 
cluster helped to generate pseudo-points which were 
assigned to HIV prevalence observed for the polygon as 
a whole. This is different from our paper, where district-
level data were obtained and not estimated or assumed. 
All the estimates in our study were linked to available 
survey data which helped to provide associated survey 
parameters.

Further, Dwyer-Lindgren et al. fitted three sub-models 
to the HIV survey data using generalized additive mod-
els, boosted regression trees and lasso regression. They 
implemented geostatistical modeling framework which 
allowed them to model HIV prevalence using a spatially 
and temporally explicit generalized linear mixed effects 
model. Unlike in our model, their logit-transformed 
HIV prevalence was modeled as a linear combination 
of a regional intercept, covariate effects, country ran-
dom effects, spatially and temporally correlated random 
effects. In our modeling framework, temporality sea-
sonal effect was not included even though the effect of 
the spatial term was done. Note also that the frequentist 
approach was the main inference strategy for our study, 
while Dwyer-Lindgren et  al. used Bayesian framework 
with a deterministic approach. Their model used the sto-
chastic partial differential equation approach to approxi-
mate the continuous spatial and spatiotemporal Gaussian 
random fields. We note that this was appropriate given 
the complexity of their dataset which would have suffered 
from serious computation cost if the frequentist or the 
sampling-based approach was implemented.

Results
Table 1 shows the population demographics of the aux-
iliary predictors used to predict district HIV prevalence. 
For instance, it can be seen that the population aged 
15–35  years represented about 35% of the population, 
although it ranged from the lowest rate of about 32% in 
some districts to highest of almost 45% in other district. 
The median population with higher education was 3.3% 
(ranged from 1.2 to 16%), while the median population of 
HIV positive pregnant women was approximately 26%. 
The females made up of 50.8% of the population. Table 1 
provides more details.

Model diagnosis and validation
The results obtained using the SAE estimates model were 
consistently more precise than those obtained from the 
direct estimate methodology. For instance, the relative 
mean standard errors (RMSE) in Fig.  1 and the relative 
standard errors (See Additional file  2) for the SAE are 
continuously lower than those from the direct estimate 
model. In addition, the reduction in relative standard 
errors, due to SAE, was greatest in districts which pro-
duced the least precise direct estimates. For instance, dis-
tricts like Chadiza, Milenge, Gwembe and Chavuma have 
relative standard errors reducing from 99.7 to 30.7%, 70.2 
to 30%, 70.9 to 29.5% and 70.4 to 33.1%, respectively. 
Assuming, for example, that “useful” estimates are those 
for which RSE ≤ 20%, then our SAE model produced use-
ful estimates in 52 of the 74 districts for which direct esti-
mation failed to produce useful estimates.

It is worth noting that the estimates from the Fay–
Herriot estimator had narrower 95% confidence inter-
vals than the direct estimates (See Fig.  2). Conversely, 
some point estimates for some districts such as Chadiza 
and Gwembe differed rather substantially between the 
design-based and model-based estimates. The design-
based survey domain estimate of HIV prevalence in 
Gwembe and Chadiza was of little value for lack of pre-
cision, and at most misleading. Smaller relative standard 

Table 1  Population demographics of the auxiliary predictors

Auxiliary predictors Mean (median) Min.–Max

Population aged 15–35 years 35.2 (34.4) 31.7–44.9

Dependence ratio 99.8 (103.1) 64.7–114.9

Population living in formal dwelling 15.8 (8.3) 0.76–88.8

Population with higher Education 4.6 (3.3) 1.2–16.1

Urban area 25.4 (14.7) 0–100

HIV among pregnant women at ANC 
clinics

31.6 (25.5) 2–90

Population density 107.9 (15.8) 2.8–4853

Female population 50.8 (50.8) 49.2–53.4
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errors from the FH small-area estimates are more likely 
to be true, compared to those from the direct estimates, 
and are much more likely to be similar to surrounding 
districts.

The conclusion from this model diagnostics and valida-
tion is that the FH estimator produces smaller standard 
errors compared to the survey-based estimates, across all 
the 74 districts of Zambia. This means that SAE preva-
lence estimates are more reliable than those obtained 
from the direct estimates.

District HIV prevalence estimates
The district HIV prevalence in Zambia ranges from as 
low as 4.3% (CI 2.6–6.9) in Lundazi to as high as 23.3% 
(CI 19.3–27.8) in Namwala. Other notable districts with 
high HIV prevalence, in order of magnitude, include 
Mongu (22.8%; CI 19.2–26.8), Mazabuka (18.7%; 15.4–
22.5), Kalulushi (17.5%; CI 13.2–22.7), Choma (17.2%; 
CI 14.4–20.5), Itezhi-tezhi (17.1%; CI 11.8–24.1),  Kafue 
(17.1%; CI 14.4–20.1) and Lusaka (16.5%; CI 15.3–17.8). 
On the other hand, the five districts with the lowest 
HIV prevalence, in descending order, were: Chama (5%; 
3.3–7.6), Zambezi (4.9%; CI 3–8.1), Kabompo (4.8%; CI 

2.9–7.5), Mafinga (4.6%; CI 2.7–7.5) and Lundazi (4.3%; 
CI 2.6–6.9). The results of the SAE reveal that 37 of the 
74 districts had relatively low HIV prevalence (≤ 10%), 
25 districts had relatively moderate HIV prevalence 
(between 10 and 15%), 10 districts had relatively high 
HIV prevalence (between 15 and 20%), while 2 districts 
had relatively very high HIV prevalence (between 18.1% 
and 23.5%). Table 2 (See Additional file 3) provides both 
direct and modeled HIV estimates for all the 74 districts, 
with confidence intervals.

The distribution of district HIV prevalence is further 
illustrated with the two maps in Fig. 3. Figure 3a shows the 
district prevalence map from the direct estimates, while 
Fig.  3b shows the map generated using SAE data. The 
notable difference between the maps is that the one devel-
oped using raw data has a wider HIV prevalence interval 
(0.8–25.4%) compared to the SAE map (4.3–23.3%). The 
spatial effect of HIV prevalence can also be seen from the 
SAE map (Fig.  3b), with relatively high HIV being con-
centrated in areas around central, southern and western 
Zambia. Note, however, that the prevalence intensities in 
maps 3a and 3b are based on relative prevalence between 
the lowest and highest  prevalence estimates within each 

Fig. 1  Relative mean standard errors (RMSE) for the FH HIV prevalence estimates and survey-based prevalence estimates: The RMSE show lower 
mean standard errors for the Fay–Herriot small-area estimations over the survey-based estimation for all the 74 Zambian districts
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map. Therefore, comparing the two maps should be done 
with caution.

The mapping shows that, generally, the districts in 
the north and eastern parts of the country have mod-
erate HIV prevalence, while districts in north-western 

Fig. 2  HIV prevalence estimates and confidence intervals for the FH and direct estimates in Zambia’s districts: The confidence intervals of the FH 
estimates are narrower than those of the direct estimates for most of the districts

Fig. 3  Zambia district HIV prevalence maps for raw (a) and SAE (b) data: The color variations in the heat map show the magnitude of the HIV 
prevalence in the 74 districts
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and north eastern parts of the country, i.e., North-West-
ern and Muchinga provinces, have the lowest HIV 
prevalence.

Discussion
This paper is the first to use SAE methods to estimate the 
prevalence of HIV at district level in Zambia. Our study 
has demonstrated that national HIV estimates currently 
being used for HIV programming fail to account for the 
full picture of the distribution, and the extent of the vari-
ations in HIV prevalence at lower levels [6, 7, 28, 29]. 
Amoako Johnson [28], for instance, warns against relying 
on national estimates for planning as this could lead to an 
“ecological fallacy,” where planning and resource alloca-
tion fail to properly account for the variations that exist 
at small domains, but may not be apparent at national 
level. The one-size-fits-all approach, associated with 
national level estimates, is unlikely therefore to achieve 
the desired results at local levels [29].

In the midst of declining HIV funding [30], design-
ing and targeting of HIV interventions require adequate 
knowledge on where the biggest resource needs lie. In 
the context of Zambia, for example, national HIV esti-
mates would demand that more resources be allocated 
to the Western province, based on the disease burden. 
However, these national level estimates do not provide 
any information on the district-specific HIV burden, 
or sub-groups in greater need of HIV policy targeting 
within the province [31]. The revelations of the wide vari-
ations in the burden of HIV within districts should be 
a policy concern and effectively makes the “bigger pic-
ture” approaches  redundant, especially if the intention 
is to make HIV programs more pragmatic and optimal 
at the local levels [32, 33]. The importance of account-
ing for within district variation in HIV prevalence has 
been highlighted by our study. For instance, while the 
average HIV prevalence for Southern province is around 
13%, the within province prevalence varies from as low 
as 7.4% to as high as 23.5%. Ensuring effective service 
delivery, under such circumstances, requires recognizing 
and tailoring interventions to the needs of the different 
subpopulations at the level at which service delivery is 
organized and delivered [34]. This remains a challenge for 
low resource countries, however, due to the higher cost 
of obtaining data to generate small-area estimates [35].

Our study has also revealed important information 
on the predictors of HIV prevalence at district level. For 
instance, our study has shown that ANC HIV prevalence 
and dependence ratio are the best out of survey predic-
tor for district HIV prevalence. This is similar to the HIV 
prediction model in South Africa [6], except the one in 
our study included an SAR spatial covariance struc-
ture. Other studies [36] have also found HIV prevalence 

among pregnant women to be a good predictor of adult 
HIV prevalence. On the other hand, dependence ratio 
may be influencing HIV prevalence indirectly, i.e., high 
dependence ratio negatively affects economic well-being 
[37], which increases the vulnerability of the population 
and their susceptibility to HIV [38, 39].

Another important finding in this study is that dis-
trict HIV prevalence in Zambia is spatially correlated, 
i.e., the prevalence in one district is correlated with the 
prevalence in adjacent districts. This is reasonable and 
expected since district boundaries are arbitrary, and 
therefore, individuals living in districts close to each other 
are likely to have similar characteristics and risk factors 
[28, 40]. Similar studies have acknowledged the impor-
tance of accounting for spatial correlation at small-area 
levels [6, 28], and this is especially true for communicable 
diseases such as HIV. It would be prudent, therefore, for 
neighboring districts to employ coordinated approaches 
to HIV programming and have a shared understanding of 
local HIV drivers and impact of the disease. The mapping 
of HIV prevalence in our study provides useful informa-
tion to facilitate such a coordinated HIV response.

The national HIV prevalence for Zambia has gener-
ally been highest in urban areas [15, 41, 42], and this is 
similar to other countries in the region such as Malawi, 
Kenya, South Africa and Zimbabwe [43–46]. However, 
district-level estimates from our study have revealed 
that HIV prevalence in some rural districts is compa-
rable, and sometimes even higher than the prevalence 
in urban districts. For instance, we found that the two 
highest HIV prevalence estimates in Zambia are in pre-
dominantly rural districts, with the highest district hav-
ing almost seven percentage points higher prevalence 
than that of the most urbanized district of Lusaka. This 
is further proof that national-level estimates mask very 
important HIV dynamics that can guide resource alloca-
tion at local levels [47]. It is likely that the national-level 
HIV dynamics observed in most countries are different 
to the situation at lower levels. As long as lower-level 
prevalence estimates remain unknown, the allocation of 
HIV resources will remain sub-optimal [48].

The lessons that can be learnt from our study are that 
HIV prevalence is highest in districts located near inter-
national borders, along the main transit routes and adja-
cent to other districts with very high prevalence. Such 
districts tend to have high population mobility due to 
commerce and trade. Similarly, the two rural districts 
with the highest HIV prevalence in Zambia are fishing 
districts and attract a large number of people for fish 
rated trade every year [49–52]. Population mobility has 
been shown to be a driver of HIV infections in other set-
tings as well [53–55]. Other similar countries can draw 
important lessons from this finding. To demonstrate the 
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importance of population mobility in HIV transmission, 
our study found that districts that experience seasonal-
ity of employment located along the main transit routes 
and those along the international border have higher HIV 
prevalence than the national average. The above factors 
have been shown to be associated with HIV in other set-
tings as well [56–58]. Districts experiencing high popula-
tion mobility are potential HIV hotspots and should be 
prioritized for HIV interventions such as test and treat 
services, regardless of location. Similarly, areas that are in 
close proximity to districts with known high HIV preva-
lence need close attention due to the spatial nature of the 
HIV epidemic, as revealed by our study.

There are some notable differences between our district 
HIV estimates and those of Dwyer-Lindgren et al., [11] a 
comparable study. For instance, our HIV prevalence esti-
mates, which are based on the 2016 ZAMPHIA survey, 
ranged from 4.2% in Lundazi to 23.3% in Namwala, while 
the prevalence estimates for Dwyer-Lindgren and others, 
over the same period, ranged from 4.4% in Isoka to 17.9% 
in Mongu. The differences in results may be attributed to 
the different modeling principles employed by the two 
studies, or the fact that the Dwyer-Lindgren estimates 
are based on the age group 15–49 years with data from 9 
provinces and 72 districts, while our estimates are based 
on the age group 15–59  years with data from 10 prov-
inces and 74 districts.

Conclusion
This is the first study in Zambia to present and map HIV 
prevalence estimates at district level using SAE methods. 
It is clear from the results that national estimates mask 
the wide variation in HIV prevalence within the districts. 
Ensuring that HIV resources are allocated where they are 
needed require knowledge on the distribution of HIV 
at smaller, more homogeneous areas such as districts. 
This study has been able to provide this information and 
mapped the distribution of district HIV in Zambia.

The revelation that HIV prevalence is very high in some 
rural districts is an important finding for HIV program-
ming. It is useful for policy makers to realize that relying 
on national level prevalence to plan interventions at dis-
trict level may not be optimal because the HIV dynam-
ics at district level are likely to be different. Utilizing 
results from SAE techniques for planning and resource 
allocation would ensure achievement of universal access 
to resources by underserved and underrepresented 
populations.

Our results have documented drivers and markers of 
high HIV prevalence at district level; information that 
can be used to plan prevention and treatment interven-
tions. Population mobility is a key driver of HIV and 
should be an important consideration when designing 

HIV interventions. Profiling the burden of disease at 
appropriate levels is a key aspect in designing respon-
sive HIV interventions, and SAE models will increasingly 
become important tools in guiding policy making and 
decision making, especially for low resource settings.

Study limitations
The SAE model used in this study helped produce dis-
trict HIV prevalence estimate; however, the use of relative 
mean standard errors and confidence intervals to validate 
the model has a potential bias. It should be noted that 
ZAMPHIA is not designed to collect representative data 
at district level, and by design therefore, SAE methods 
are always going to produce relatively better estimates, 
with smaller standard errors than ZAMPHIA estimates 
because they utilize additional data, in addition to the 
survey-based estimates. An additional validation method 
would have been useful. Additionally, the model was built 
with covariates as collected by the Census data and ZAM-
PHIA, and there is a chance that other HIV-related covar-
iates, not collected by the Census and the ZAMPHIA, e.g., 
the prevalence of transactional sex, could have strength-
ened the model. The other limitation is that this study 
uses data from different time points, i.e., the 2016 ZAM-
PHIA, 2017–18 ANC and 2010 census data, which may 
affect the observed relationship between the outcome and 
the explanatory covariates. It is, however, unlikely that 
any demographic changes over the review period would 
significantly change our findings. Generally, this study 
has provided policy relevant information that can be uti-
lized to improve targeting of HIV resources at local levels 
where interventions are planned and delivered.
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