These updated GBD analyses provide a comprehensive picture of the diabetes burden in Brazil. While some improvement has occurred in its age-standardized frequency and burden, population aging has resulted in increases in its crude incidence, prevalence, and burden from 1990 to 2017. Over the period studied, the growth in diabetes frequency and burden has been greatest in the Northeast, North, and Center-West regions, with concomitant decreases occurring in the Southeast region. The period studied has also witnessed an ongoing change in the causes of burden of hyperglycemia, with a greater spread of burden across disease/complication groupings and less concentration in cardiovascular diseases. Projections to the year 2040 suggest that the trend for an ever-greater burden due to diabetes and hyperglycemia will exacerbate, again driven principally by further aging of the population.
GBD estimates of prevalence are based primarily on Brazilian survey data, specifically those using blood testing. However, these data are sparse and sub-national and must thus be interpreted with caution. Estimates of the prevalence of diabetes in Brazil, not incorporated into the GBD due to being based on self-report or on medication use without accompanying lab testing, include self-report of diabetes from PNAD studies (1998, 2003, 2008) [14] and the National Health Survey (PNS) of 2013. The latter showed a national prevalence of 6.2% (5.9–6.6%) for those 18 or older, [15] identical to that found for those over 20 by the GBD. However, when defined as either a high glycated hemoglobin or medication use in a representative sub-sample undergoing blood testing of the PNS, diabetes prevalence increased to 8.4% (7.6–9.1%) [16]. Vigitel provides yearly estimates for Brazilian capitals from 2006 onward. Based on Vigitel data adjusted for age, BMI, and educational attainment, the prevalence of diabetes among adults has risen from 5.7 to 8% from 2006 to 2014, different from the slight decline in age-standardized prevalence shown here [17]. Additionally, GBD may also underestimate the true prevalence of diabetes since most surveys reporting laboratory results are based only on fasting glycemia and thus not accounting for cases detected only by an OGTT [18]. Moreover, given the doubling of the GBD’s summary exposure value for age-standardized high body mass index in Brazil over the period studied, a decline in age-standardized diabetes incidence and prevalence seems unlikely. Our GBD estimates thus should perhaps be seen as conservative ones. Further, though these estimated rates are declining overall, as shown in Fig. 3, they are rising in much of the country, especially in the North and Northeast regions, perhaps the result of more unfavorable changes in risk factors for diabetes in these regions. For example, over this time period, the risk-weighted prevalence (summary exposure value) of high BMI has risen at a greater rate in these regions than in the rest of the country.
This is the first report of national mortality trends by type of diabetes. The large decrease observed for age-standardized mortality for type 1 diabetes is consonant with a previous report of rapidly decreasing mortality due to acute complications of diabetes [19], which weighs more heavily in type 1 diabetes.
These findings can be contextualized in a world which was unprepared for the joint obesity and diabetes pandemics and has yet to discover how to effectively deal with them. What we report for Brazil can be found, in one degree or another, in most countries around the world. Diabetes, merely a curiosity in terms of international public health 40 years ago, being highly prevalent only in select native American and Pacific islander populations, is now a major and ever-growing concern [1]. The ongoing demographic, nutritional, and epidemiologic transitions will tend to exacerbate these trends in the future. Surprisingly, these GBD data show that the age-standardized incidence of type 2 diabetes in Brazil has remained basically stable over the period studied, despite a large increase in age-standardized high body mass index. The increases seen in diabetes prevalence over this period are thus mainly due to aging of the population and to the greater survival of those with the disease.
The geographic trends in estimated prevalence and burden in Brazil document that diabetes has increasingly shifted to the poor, as the Northeast and North regions are Brazil’s poorest. Data from a large Brazilian cohort study confirm this, showing a major educational gradient in prevalence, with those lacking a complete primary education having a 64% greater adjusted prevalence of diabetes than those with a university degree [18].
These findings demonstrate the urgent need for Brazilian society and health care organizations, especially the SUS (Sistema Único de Saúde, the Brazilian national health system), to develop effective strategies to stem the continued rise in diabetes prevalence and burden. These include both actions to prevent diabetes and actions to treat diabetes once present. The Brazilian Ministry of Health, responsible for maintaining the health of the population, must lead the way, aligning and prioritizing the use of available resources to control these major and growing vectors of disease burden. As population aging will continue, the incidence of diabetes must be decreased if the epidemic and its burden are to be controlled.
The 2011 Brazilian plan to confront the NCDs [20], consonant with the WHO Action Plan [21], emphasized the control of diabetes and many of its risk factors, but has yet to produce favorable trends in the prevalence, incidence, mortality, and burden of diabetes. On the positive side, recent findings from Vigitel suggest that the prevalence of obesity may have stabilized over the past 3 years [22], which, if confirmed, may eventually contribute to decrease burden.
As the focus of that plan, controlling risk factors, such as poor nutritional practices and sedentary lifestyles, appears appropriate and aligned with the World Health Organization [21] and what seems to be lacking is more effective implementation. Particularly, encouraging in terms of interventions which were implemented has been the 2014 Nutritional Guidelines for the Brazilian population [23, 24] as many recent studies have suggested an important role for ultraprocessed foods, focus of these Guidelines, in the current obesity pandemic [25, 26].
Clinical strategies stimulating lifestyle change in those at high risk to develop the disease have been shown to prevent diabetes [27, 28]. However, recent studies have made it clear that strategies focusing on the detection and treatment of those at high risk will be, by themselves, inadequate [29, 30]. Many reasons exist for this. One major one is that the diabetes “prevented” is in fact frequently merely “delayed” [31]. Added to this problem is the fact that, within the current social context, individual efforts to change lifestyle are frequently difficult and frustrating. Perhaps most importantly, type 2 diabetes is a life course disease—one that develops slowly during life [32, 33]. To focus only on high risk groups is to ignore the multitude of approaches to prevention that can be approached through population-based or primary care strategies—a healthy gestational lifestyle, breastfeeding, healthy nutrition, avoidance of weight gain in childhood, adolescence and early adulthood, and greater physical activity to name several major ones—which can be implemented prior to risk becoming acute. Finally, that over 50% of middle-aged and elderly Brazilians have been shown to be at high risk by at least one of the standard definitions of intermediate hyperglycemia [34], which adds an additional justification for promoting lifestyle changes in the whole population.
Most of these actions focus on preserving health rather than preventing disease and are population—rather than clinical-based in nature. They involve stimulating healthy choices, especially related to nutrition and physical activity [3, 21, 35]. Studies document the much greater effectiveness of population-based rather than clinical interventions for control of non-communicable diseases [36]. In terms of nutritional interventions, dozens have been recently proposed, and many were implemented in Brazil [37,38,39]; although with the changes over the past 2 years in the federal administration and the recession, much of what was initiated has come undone. Additionally, Brazilian society, like many around the world, has been in large part immobilized in forging population-level responses to this challenge. This is in part due to the relative novelty of public health approaches for chronic disease control. While Brazilian society has generally accepted that vaccinations, control of infectious disease vectors and well-baby measures, and even nutritional interventions of massive reach such as iodination of salt and water fluoridation, are within the accepted scope of government interventions, and it has yet to come to a similar consensus with respect to interventions aimed to minimize exposure to unhealthy foods and lifestyles. Reaching this consensus is complicated by negative inputs from economic interests, particularly the international food industry, which has adopted strategies of silently lobbying against such interventions while publicly casting doubt on the evidence base used for deeming products to be unhealthy, strategies similar to those used by tobacco companies in the recent past [40]. Additionally, if environmental pollutants do in fact have a role for in causing diabetes [41, 42], they must also receive due attention. In sum, recognition of the importance of such population-based interventions and work to implement them is urgently needed in Brazil.
Perspectives for the treatment of diabetes and its complications extrapolate the focus of this report. However, clinical trials have demonstrated that some of the more recently introduced anti-hyperglycemic medications have major benefit in terms of reduction of morbidity and mortality [43]. How best to incorporate these benefits into health care, especially the national health system, without bankrupting health care in the process, is a major challenge at present. Strict attention to providing other, more accessible treatments, such as those for hypercholesterolemia and hypertension, and guaranteeing that treatment goals are achieved, is another challenge, one especially relevant to primary care.
Limitations to this report merit discussion. Brazilian mortality data have weaknesses, including high degrees of incompleteness and of poor definition of cause, increasing risk of inaccuracy of historical trends. Access to medical care and quality of public health indicators are worse in the North and Northeast regions, making estimates for states of these regions particularly limited. Happily, these regional inequalities have diminished greatly over the past two decades. However, while incompleteness has diminished substantially, the definition of cause of death still presents an enormous degree of inaccuracy. As mentioned above, data on prevalence are based many on studies of small communities, which, even when pooled, are questionably representative of the Brazilian population. Further, data on the incidence of diabetes are particularly scarce, making estimates of incidence and its trends especially difficult. Another potential problem is that estimates of burden due to high fasting plasma glucose are based on relative risks developed from international data which may not represent the Brazilian context. Though the GBD has adopted approaches to minimize these problems, they have not been eliminated. Another limitation is that the forecasting estimates through 2040 have very broad uncertainty intervals. Finally, estimates of the diabetes and hyperglycemia disease burdens are complicated by difficulties in apportioning cause in diseases with multiple causes. Within this context, about 40% of deaths due to diabetes are currently believed to result from non-vascular complications, most of which have not been taken into consideration in GBD 2017 calculations. These complications include many types of cancer, chronic obstructive pulmonary disease, and pneumonia and other infections [44], and their omission may result in substantial underestimation of the diabetes burden. That said, the sophisticated, standardized approaches implemented by the Institute of Health Metrics and Evaluation, actively supported by Brazilian demographers, epidemiologists and statisticians, make these GBD 2017 estimates the best ones available to date and should permit that the doubts raised here will be resolved in future iterations of the GBD.