Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Mortality following the Haitian earthquake of 2010: a stratified cluster survey

Population Health Metrics201311:5

https://doi.org/10.1186/1478-7954-11-5

Received: 1 October 2012

Accepted: 15 April 2013

Published: 25 April 2013

Abstract

Introduction

Research that seeks to better understand vulnerability to earthquakes and risk factors associated with mortality in low resource settings is critical to earthquake preparedness and response efforts. This study aims to characterize mortality and associated risk factors in the 2010 Haitian earthquake.

Methods

In January 2011, a survey of the earthquake affected Haitian population was conducted in metropolitan Port-au-Prince. A stratified 60x20 cluster design (n = 1200 households) was used with 30 clusters sampled in both camp and neighborhood locations. Households were surveyed regarding earthquake impact, current living conditions, and unmet needs.

Results

Mortality was estimated at 24 deaths (confidence interval [CI]: 20–28) per 1,000 in the sample population. Using two approaches, extrapolation of the survey mortality rate to the exposed population yielded mortality estimates ranging from a low of 49,033 to a high of 86,555. No significant difference in mortality was observed by sex (p = .786); however, age was significant with adults age 50+ years facing increased mortality risk. Odds of death were not significantly higher in camps, with 27 deaths per 1,000 (CI: 22–34), compared to neighborhoods, where the death rate was 19 per 1,000 (CI: 15–25; p = 0.080). Crowding and residence in a multistory building were also associated with increased risk of death.

Conclusions

Haiti earthquake mortality estimates are widely varied, though epidemiologic surveys conducted to date suggest lower levels of mortality than officially reported figures. Strategies to mitigate future mortality burden in future earthquakes should consider improvements to the built environment that are feasible in urban resource-poor settings.

Keywords

HaitiEarthquakeMortalityNatural disaster

Introduction

Urbanization increases disaster risk because of the high concentrations of population and assets that are vulnerable when a major disaster occurs. In lower- and middle-income countries, continual social and demographic change also complicate issues of urban disaster risk management. Concentrations of economically poor slum residents, especially in cases where slum settlements expand to hill slopes or flood plains, increase the hazard profile of the city. Lack of urban planning capacity, implementation, and enforcement of building codes and poorly regulated development are common problems across many urban centers in lower- and middle-income countries that increase disaster risk [1] In Haiti, the capital of Port-au-Prince is known to be at risk for hydro-meteorological hazards, in particular hurricanes, with little concern for geologic hazards because of the lack of significant historical earthquakes [2]. This changed with the magnitude 7.0 earthquake that struck on January 12, 2010, and devastated the city with a reported 222,750 deaths, 300,000 injured, 1.5 million displaced, and more than 3 million affected. Relief and recovery operations were historic, and by October 2010, the response was one of the largest in history with an estimated cost of $4.5 billion [3]. This study sought to estimate mortality from the 2010 Haiti earthquake and identify risk factors for mortality in major earthquakes in low-income settings.

Methods

A cross-sectional cluster survey of the earthquake-affected population in metropolitan Port-au-Prince was conducted in January 2011 to assess the impact of the 2010 earthquake on Haitian households and to characterize perceptions of humanitarian assistance at one year postearthquake; the mortality data presented in this paper were collected as part of this larger study. The proportion of the affected populations residing in camps and neighborhoods could not be accurately estimated from available government and United Nations information; thus, a stratified design was used to enable comparison between camp and noncamp (neighborhood) populations. A stratified cluster survey with 60 clusters of 20 households, including 30 camp and 30 neighborhood clusters, was used to characterize earthquake impact and receipt of humanitarian assistance in camp and neighborhood populations. Sample size was calculated based on the broader study objective of comparing the status of camp and noncamp populations. Calculations were based on the most conservative prevalence rate of 50% and a hypothesized difference of 10% between camp and noncamp populations for measures of impact, inadequate living conditions, and receipt of humanitarian assistance; other parameters included 80% power, alpha = 0.05, and an anticipated cluster sample design effect of 1.5. Households were included in the survey only if the dwelling had been damaged, income or livelihood affected, or a household member was injured or died as a result of the earthquake. The survey instrument was developed in English and translated into Creole and conducted by trained Haitian nationals.

Clusters were assigned using probability proportional to size (PPS) sampling. Camps were sampled using the PPS methodology from a list of planned and spontaneous settlements obtained from the Camp Coordination and Management Cluster [4]. The starting point in each camp cluster was a randomly selected intersection, and every third shelter was sampled until 20 households were completed. For neighborhoods, cluster allocation was based on a remote sensing building damage assessment [5], under the assumption that the number of moderately and heavily damaged residential structures was proportional to the earthquake-affected population within an administrative unit. The proportion of moderately to heavily damaged residential buildings from the damage assessment and 2009 population estimates were used to estimate the affected population within each commune (similar to a district) in Port-au-Prince. Clusters were then assigned to communes proportionate to the estimated affected population. Within each commune, clusters were assigned to sections (similar to a subdistrict or neighborhood) proportionally based on 2009 population estimates [6]. In each section, geographic coordinates were randomly selected and the nearest intersection was used as the cluster start. Then, a randomly selected number and direction were generated among the streets or pathways meeting the intersection to select one for the survey start location. From there, every third residential entrance was sampled; in buildings with multiple households, one household was randomly sampled. Data were collected using questionnaire-based interviews by a team of local Haitian interviewers from Port-au-Prince. Any adult household member was eligible to serve as a respondent; however, the head of household usually acted as the respondent if he or she was present at the time of the interview. If absent, second priority was given to the head of household’s spouse or the caretaker of young children. Only pre-earthquake household members were used for mortality estimation; individuals that joined the household after the earthquake were excluded because they were originally part of other households, and a separate interview would have been needed. This would have been difficult given that many of them were children. The response rate was high (>95%) in households in which adults were present; the number of households in which no adult was present and those that did not meet inclusion criteria were not recorded.

Data analysis was performed with Stata version 12 (College Station, TX) using simple logistic regression, multivariable logistic regression, and mixed-effects logistic modeling methods, as well as chi-squared and t-tests. The design effect was calculated at 1.21; consequently, odds of mortality and related confidence intervals (CIs) were adjusted to reflect the cluster survey design. Multiple variable logistic regressions were conducted with a mixed-effect model (xtmelogit command of Stata). Mixed-effects simple and multiple logistic regressions were used to measure the total unadjusted and adjusted odds of mortality. The final model was selected based on Akaike Information Criterion and Pearson’s goodness of fit test.

The study was certified exempt by the Johns Hopkins Bloomberg School of Public Health Institutional Review Board and approved by the Haitian Ministry of Public Health and Population. This work was supported by the Johnson and Johnson Foundation and the Johns Hopkins Bloomberg School of Public Health Center for Refugee and Disaster Response.

Results

In January 2011, when the survey was conducted, the 1,197 households surveyed had a combined population of 6,696 individuals, of which 6,547 (97.9%) were reported as household members on the day of the earthquake. A total of 149 individuals were born or moved into households after January 12, 2010 and were not included in the earthquake-exposed population that served as a denominator for mortality calculations. Descriptive characteristics of the sample population are summarized in Table 1. The average household size was 5.3, and household size was similar in the camp and neighborhood populations (p = 0.474). The population was 52.5% female, and camps had a significantly higher proportion of females than neighborhoods (53.9% female vs. 51.0% female; p = 0.017). Age composition of the sample population was as follows: 0–17 years, 35.2%; 18–49 years, 56.44%; 60+ years 8.39%. The average age was 26.1 years (standard deviation [SD] = 16.1), and camp residents were significantly younger than neighborhood residents (23.8 years vs. 27.4 years; p < 0.001). The highest educational level attained by any household member (categorized as none, primary school or less, secondary school, or higher education) showed significant differences between camps and neighborhoods, with camp residents having lower education levels (p < 0.001). As compared to neighborhood residents, camp residents were significantly less likely to own their own home (53.2% vs. 22.7%) and more likely to live in crowded conditions (24.9% vs. 39.1%, defined as ≥4 people/room) prior to the earthquake, suggesting that households of lower socioeconomic status were more likely to be displaced.
Table 1

Comparison of baseline characteristics by postearthquake residence location

 

Neighborhoods

Camps

Total

p-value

 

(n = 3261)

(N = 3286)

(N = 6547)

 

Baseline characteristics of the sample population

Age

n

(%)

n

(%)

n

(%)

<0.001¥

0-17

1010

30.1

1293

39.5

2303

35.2

 

18-49

1920

58.88

1775

54.02

3990

60.9

 

50+

331

10.15

218

6.63

230

3.5

 

Mean (SD)

27.4(16.9)

23.8 (17.0)

25.4(16.7)

    

Sex

      

0.017 ¥

Males

1567

48.1

1490

45.3

3057

46.7

 

Females

1632

50.1

1748

53.2

3380

51.6

 

Household education

      

<0.001 Ω

None

76

2.3

217

6.7

293

4.5

 

Primary school or less (%)

428

13.2

811

25.0

1239

19.1

 

Secondary school (%)

1764

54.4

1925

59.2

3689

56.8

 

Higher education

976

30.1

298

9.2

1274

19.6

 

Pre-earthquake living conditions

Type of house

      

0.219 Ω

Detached single family

1232

37.9

1233

37.5

2465

37.7

 

Attached single family

1497

46.0

1463

44.5

2960

45.3

 

Apartment/multiple dwelling

525

16.1

590

18.0

1115

17.1

 

Multilevel building

      

0.249 ¥

Single level

2099

67.0

1901

65.5

4000

66.2

 

Multiple levels

1039

33.0

1002

34.52

2041

33.8

 

Wall material

      

0.291 ¥

Concrete or brick

3072

94.9

3136

95.4

6208

95.2

 

Other

166

5.1

150

4.6

316

4.8

 

Roof material

      

0.342 Ω

Cement/concrete

2014

61.8

2014

61.3

4028

61.5

 

Metal sheeting

1193

36.6

1272

38.7

2465

37.7

 

Plastic/thatch

54

1.7

0

0.0

54

0.8

 

Home and land occupancy

      

<0.001 Ω

Own home w/ title to land

1731

53.2

741

22.7

2472

37.9

 

Own home w/o title to land

274

8.4

182

5.6

456

7.0

 

Rent

1244

38.2

2322

71.0

3566

54.6

 

Other

8

0.3

25

0.8

33

0.5

 

Crowding category

      

<0.001 Ω

<2.0

1248

38.3

679

20.7

1927

29.4

 

2.0-2.9

825

25.3

744

22.6

1569

24.0

 

3.0-3.9

376

11.5

577

17.6

953

14.6

 

4.0+

812

24.9

1286

39.1

2098

32.1

 

¥ Calculated using the t-test.

Ω Calculated using analysis of variance.

A total of 159 deaths were reported in the pre-earthquake population between the January 12, 2010 earthquake and the January 2011 survey (of 6,536 individuals with reported survival status). Of these, 153 were direct deaths that occurred on the day of the event (95%) or within a month as result of earthquake-sustained injuries (5%). The overall earthquake mortality rate is estimated to be 24 deaths/1,000 (CI: 20–28) (Table 2). Elevated mortality was observed among households residing in camps, at 28 deaths/1,000 (CI: 22–34), as compared those in neighborhoods where the death rate was 19 deaths/1,000 (CI: 15–25) (p = 0.030). Age- and sex-specific mortality rates are presented in Figure 1. No significant difference in mortality was observed between males and females (p = 0.786). When assessed by age, mortality rates were as follows: children 0–17 years, 16 deaths/1,000 (CI: 11–22); adults 18–49 years, 24 deaths/1,000 (CI: 20–31); older adults 50+ years, 44 deaths/1,000 (CI: 28–64).
Table 2

Mortality estimates and odds of death by individual and household characteristics

 

Total exposed

Total deaths

Mortality rate (deaths/1000)

Odds of death§

 

Rate

95% CI

Odds ratio

95% CI

p-value

Overall

6383

153

23.97

20.36- 28.03

   

Sex

       

Male

3052

71

23.26

18.21 – 29.25

Reference

  

Female

3379

76

22.49

17.76 – 28.07

0.96

0.71 – 1.33

0.786

Age category

      

<0.003*

0-17

2299

37

16.09

11.36 – 22.11

Reference

  

18-49

3689

92

24.93

20.15 – 30.49

1.56

1.06 – 2.30

0.023

50+

548

24

43.79

28.26 – 64.47

2.80

1.66 – 4.72

<0.001

Education level

     

0.399*

None

289

11

38.06

19.15 – 67.08

Reference

  

Primary

1237

27

21.83

14.43 – 31.60

0.59

0.28 – 1.24

0.165

Secondary

3685

83

22.52

17.98 – 27.85

0.61

0.31 – 1.20

0.150

Higher education

1273

31

24.35

16.69 – 34.39

0.62

0.29 – 1.32

0.213

Crowding

     

0.082*

<2.0

1927

35

18.16

12.68 – 25.17

Reference

  

2.0-2.9

1566

37

23.63

16.69 – 32.42

1.32

0.82 – 2.13

0.257

3.0-3.9

949

23

24.24

15.42 – 36.15

1.28

0.74 – 2.23

0.375

4.0+

2094

58

27.70

21.10 – 35.66

1.52

0.97 – 2.37

0.069

Current cocation

       

Neighborhood

3258

63

19.34

14.89 – 24.67

Reference

  

Camp

3278

90

27.46

22.13 – 33.64

1.44

0.90 – 2.29

0.127

Multilevel

       

1 level

3999

76

19.00

15.00 – 23.73

Reference

  

>1 level

2031

67

32.99

25.66 – 41.71

1.98

1.38 – 2.83

<0.001

§ Mixed-effect logistic modeling was used to obtain odds ratio and CI estimates accounting for cluster design.

*Indicates overall p-value for the categorical variable calculated using the likelihood ratio test.

Figure 1

Age and sex specific morality rates.

Variables related to socioeconomic status, such as highest household education level attained, whether or not the pre-earthquake home had multiple levels, and crowding, were associated with mortality outcomes. The highest mortality rate was found among households in which no member had completed primary school (38 deaths/1,000, CI: 19–67), although as a categorical variable, household education was not significant in predicting mortality. Crowding can serve as a proxy for socioeconomic status and was associated with increased mortality risk; however, this finding was of marginal statistical significance (p = 0.082). Residence in a multistory building was associated with increased risk of death; mortality rates among households in single and multistory residences were 19 deaths/1,000 (CI: 15–24) and 33 deaths/1,000 (CI: 26–42) (p < 0.001).

In simple logistic regression, age and housing characteristics were significantly associated with increased mortality risk (Table 3). In the multiple logistic regression model, age and housing characteristics remained significantly associated with increased odds of death. As compared to children 0–17 years, middle-age (18–49 years) and older (50+ years) adults were 1.34 (CI: 0.89-2.01) and 2.50 (CI: 1.41-4.39) times more likely to experience death, respectively. Members of households in residing in multistory buildings had a mortality risk of 1.98 (CI: 1.38-2.83) times greater than residents of single level buildings. Crowding was a marginally significant predictor of mortality (p = 0.082) but was included in the final model based on log rank tests. Within category comparisons indicated that odds of death were 1.7 times (CI: 1.06-2.69) higher in populations with more than four people per room as compared to populations with two or fewer people per room (p = 0.027). The mortality rate among populations displaced to camps was 1.5 (CI: 0.95-2.38) times greater than populations in neighborhoods; however, this finding was only marginally significant (p = 0.080).
Table 3

Crude and adjusted Odds ratios for mortality

 

Crude odds

Adjusted odds**

 

Odds ratio

95% CI

p-value

Odds ratio

95% CI

p-value

Age category

     

<0.003*

0-17 (reference)

1.00

1.06 – 2.30

0.023

1.34

0.89 – 2.01

0.163

18-49

1.56

 

<0.001

2.50

1.41 – 4.39

0.002

50+

2.80

1.66 – 4.72

    

Multilevel

      

Single level (reference)

1.00

     

Multiple levels

1.76

1.26

0.001

1.98

1.38 – 2.83

<0.001

Crowding category

     

0.082*

<2.0 (reference)

1.00

     

2.0-2.9

1.32

0.81 – 2.13

0.257

1.34

0.81 – 2.20

0.252

3.0-3.9

1.28

0.74 – 2.23

0.375

1.31

0.73 – 2.34

0.373

4.0+

1.52

0.97 – 2.37

0.069

1.69

1.06 – 2.69

0.027

Current residence location

      

Neighborhood (reference)

1.00

     

Camp

1.44

0.90 – 2.29

0.127

1.50

0.95–2.38

0.080

Pre-earthquake living conditions

Home Owner

1.00

 

0.222*

   

Own home w/ title (reference)

1.49

0.85 – 2.61

 

-

-

-

Own home w/o title

0.92

0.65 – 1.29

0.167

-

-

-

Rent

-

 

0.616-

-

-

-

Other

   

-

-

-

Housing type

  

0.003*

   

Detached single family home

1.00

-

-

-

-

-

Attached single family home

0.93

0.64 – 1.37

0.720

-

-

-

Apartment or multifamily dwelling

1.99

1.33 – 2.99

0.001

-

-

-

Wall material

      

Cement/concrete

1.00

-

-

-

-

-

Other

1.24

0.63 – 2.46

0.536

-

-

-

Roof material

  

0.097*

   

Concrete/brick

1.00

-

-

-

-

-

Metal sheeting

0.68

0.48 – 0.97

0.032

-

-

-

Plastic/thatch

0.69

0.10 – 5.04

0.714

-

-

-

* Indicates overall p-value for the categorical variable using the likelihood ratio test.

** E [log odds of death] = ß0 + ß1i.age_cat3 + ß2multilevel + ß3crowd_cat + ß4location ; Pearson’s goodness of fit test: χ2 = 94.22, p = 0.280.

Mortality projections using survey-determined rates and methods approximating those used in the Kolbe et al. [7] and Schwartz et al. [8] studies are presented in Table 4. Using direct extrapolation, estimated total mortality for the affected population was 74,190 (range: 63,061-86,555). Extrapolation by damage level yielded a total estimate of 63,901 deaths (range: 49,033-81,862); a significant difference was observed between mortality rates of households living in homes that were mildly or moderately damaged compared to those that were significantly damaged or destroyed (p < 0.001)a.
Table 4

Earthquake mortality projections*

Direct extrapolation to the exposed population

 

2009 population30

Point estimate

Low estimate

High estimate

Survey rate (deaths per 1,000)

--

24.0

20.4

28.0

Metropolitan Port-au-Prince mortality

2,457,807

58,987

50,139

68,819

All affected areas mortality

3,091,236

74,190

63,061

86,555

Extrapolation by damage level

Survey mortality rates by residence damage Level (deaths per 1,000, 95% CI)

building destruction level category for pre-earthquake residence (respondent reported based on the MTMPC survey) [31]

Deaths/total exposed

Point estimate

Low estimate

High estimate

Green

11/531

20.7

10.4

36.8

Yellow

35/3216

10.9

7.6

15.1

Green and yellow (mild to moderate damage)

46/2847

16.2

11.9

21.5

Red (significant damage/destroyed)

107/2775

38.6

31.7

46.4

Significantly damaged or destroyed residences

N

Total

Percent

MTMPC Building Survey

 

77,674

382,256

20.3%

Remote-sensing damage assessment [29]

    

Metropolitan Port-au-Prince

 

47,903

241,791

19.8%

All affected areas

 

59,073

299,257

19.7%

Estimated number of deaths by residential destruction level

   
 

Population estimate**

Point estimate

Low estimate

High estimate

Metropolitan Port-au-Prince

    

Mild to moderate damage

1,966,246

31,853

23,398

42,274

Significant damage/destroyed

491,561

18,954

15,587

22,813

Total

 

50,807

38,986

65,088

All affected areas

    

Mild to moderate damage

2,472,989

40,062

29,429

53,169

Significant damage/destroyed

618,247

23,839

19,605

28,693

Total

 

63,901

49,033

81,862

*The direct extrapolation approach is similar to the method used by Kolbe et al., while the extrapolation by damage level approach is similar to the method used by Schwartz and incorporates damage levels of residences. For all rates, the survey-determined point estimate and upper and lower bounds for confidence intervals are applied to the estimated population.

**Calculated by multiplying the 2009 population figures by 20.0% (proportion of residences significantly damaged or destroyed) and 80% (residences not significantly damaged or destroyed).

Discussion

There is substantial variation in earthquake mortality outcomes [9]. Low levels of economic development have been associated with higher earthquake mortality, suggesting that poorer countries face increased risk due to a variety of characteristics of the built environment [911]. Building collapse accounts for almost all earthquake-related death, with a majority of deaths occurring indoors [9, 1113]. Construction materials that have been associated with increased mortality or injury risk include unreinforced masonry[14], mud and stone walls [15], concrete [16], panel construction [17], and wood [1820].Worldwide, the greatest risk of collapse and resulting deaths is from unreinforced masonry structures (including mud brick) [21]. Other features of the built environment and individual location (at the time of the earthquake) associated with increased risk for earthquake mortality include being on the ground floor [22], or upper floors [11, 23] of multistory buildings, earthquake intensity, and distance to the epicenter [2427]. Individual-level characteristics associated with increased risk for earthquake mortality and injury include both age and sex. Higher rates of death among older populations are common [17, 23, 2633] and several studies also show that children face an increased risk of death [15, 25, 27, 31]. Female sex was significantly associated with increased risk of death in at least three earthquakes [10, 29, 32]; however, a similar number of studies found no significant difference in mortality by sex [24, 25, 28, 32].

This analysis is one of several attempts to characterize mortality following the 2010 Haitian earthquake. The results from the data collected in this study found an earthquake mortality rate of 24 (CI: 20–28) deaths per 1,000 in the sample population. This observation suggests that mortality was nearly four-fold lower than officially reported figures. At one year after the earthquake, UN revised mortality figures estimated that 222,750 deaths occurred [34]. With a population of 3.1 million in the affected areas [6], this equates to a mortality rate of approximately 72 deaths per 1,000. The methods by which the official mortality estimates were obtained are undocumented, and their accuracy has been questioned, with some critics suggesting they are inflated, in particular given the substantially lower casualty figures reported in the immediate aftermath [8]. However, our study could underestimate the total deaths because the sampling did not account for households with high or complete mortality that could not be sampled. Other scientific studies have estimated Haitian earthquake mortality at 111,794 (CI: 93,273–130,316) deaths during or immediately after the earthquake, with a mortality rate of 41 (CI: 35–48) deaths per 1,000 [7] and between 46,190 and 84,961 deaths, with a mortality rate of 22 deaths per 1,000 [8].

Extrapolation of survey-based rates to large urban populations in instances such as Haiti where damage and mortality are highly variable and geographically concentrated presents numerous methodological challenges, particularly in the context of widespread displacement and mortality. While data from three epidemiologic studies conducted to date clearly indicate lower levels of mortality than the official estimates, there are noteworthy differences in study methods that likely contribute to the observed variation in mortality estimates. The Kolbe et al. study [7] used a pre-earthquake random sample of Port-au-Prince households and then sought to follow up the population postearthquake, whereas this survey and the Schwartz study [8] intended to capture representative samples of the affected population. The extrapolation methods also differed with Kolbe et al., using direct extrapolation of the survey rate to the affected population, whereas the Schwartz et al. and the present study determined mortality rates by building damage level to account for variation in impacts.

While both extrapolation methods were applied in the current paper, the authors believe the methodology that takes damage level into account is more accurate. When damage levels are accounted for, the results of the present study yielded an estimate of 63,901 deaths (range: 49,033-81,862), which is consistent with the Schwartz estimate of 46,190 to 84,961 deaths. Extrapolating from structure damage levels could underestimate fatalities because there is no distinction within the “red” category (uninhabitable) between damaged but standing and collapsed buildings, despite structural collapse being the greatest predictor of mortality [20, 24]. While these values provide another independent projection of the number of earthquake fatalities, it is important to note that other more advanced methods of mortality modeling, including those that incorporate Geographic Information Systems (GIS) and which are based on a larger sample size, would likely yield more accurate estimates of total mortality.

Age was important in predicting the odds of death in this study, with increased mortality risk observed among older adults, a finding common to many earthquake settings [17, 22, 2532]. However, this observation is contrary to the Kolbe et al. study [7], which found that children were 5.8 (CI: 4.0-8.3) times more likely to have been killed in the earthquake than adults, and that children accounted for the majority of earthquake deaths. Unfortunately, no other findings on age or sex as a risk factor for death in the Haitian earthquake have been reported, which limits further comparison. In this study, the population displaced to camps had a higher mortality rate compared to those remaining in neighborhoods; however, the statistical significance of this finding was marginal. Number of levels in the housing structure and crowding, a proxy for both socioeconomic status and population density, were both associated with mortality risk. In our analysis, residential construction characteristics such as roof or wall construction material, housing type (apartment, detached, or attached home), and number of levels, had varying levels of association with mortality in simple regression, and only the number of levels was included in the final multiple regression model. Associations between single versus multilevel homes, crowding, and increased mortality risk support the hypothesis that earthquake vulnerability is related to the built environment and that households of lower socioeconomic status with high levels of population density face increased risk of both displacement and death.

The high levels of mortality observed in Haiti were largely attributable to substandard and unsupervised construction practices [35]. Given that most mortality and injury following earthquakes is mediated by building damage, rebuilding structures with improved earthquake-proof construction is critical for future disaster preparedness efforts. Substantial investment in infrastructure, urban planning, and building code enforcement are required if reconstruction efforts are to yield sound earthquake-resilient structures. However, mitigating the risk posed by poor construction is especially challenging and perhaps unfeasible in resource-poor settings where retrofitting buildings and code enforcement are both cost-prohibitive and often not a priority for local authorities and at risk populations.

Limitations

Sample size calculations for the survey were based on initial mortality reports from the Haitian government; however, observed mortality was three-fold lower than rates used for sample planning. A larger sample size would have improved exploration of risk factors, detection of significant differences, and led to greater precision. One limitation of cluster survey designs in earthquake settings is that areas of concentrated deaths, such as collapsed apartment buildings, are likely to be missed, which could result in the underestimation of mortality. Another limitation that likely contributed to the underestimation of mortality is survivor bias, in which households where no members survived or where few members survived were not included in the retrospective mortality estimates. Furthermore, it is possible that the sample was not representative of the affected population because replacement sampling was used, when households that were not at home were systematically excluded. With respect to assessing risk factors for death, improved descriptions of buildings in which deaths occurred and location of individuals at the time of the earthquake would have been useful in analyzing the built environment’s mediating effect on mortality outcomes. However, the long recall period, potential inaccuracies in reporting relevant environmental details for the pre-earthquake residence location of all household members, and the inability to systematically confirm reported building material data for the majority of individuals prohibited the collection of more detailed information on the built environment and subsequent risk analysis. Finally, more research is needed to investigate how built environment characteristics can or cannot serve as proxies for socioeconomic status; a clear understanding of these relationships would have enabled stronger conclusions.

Conclusion

Estimation of mortality and morbidity in natural disasters and conflicts is controversial, and inconsistencies in the reported impacts of these events are not uncommon. The importance of death and injury counts for humanitarian response planning, documentation of human rights violations, and longer-term public policy responses to emergencies is increasingly accepted. However, the methods used to arrive at these estimates are often poorly documented, widely variable, and often the subject of intense debate criticism. Mortality in the 2010 Haitian earthquake is no exception. Results of epidemiologic surveys suggest a substantially lower mortality burden than figures reported by the Haitian government and United Nations. Findings from this study indicate an earthquake mortality rate of 24 deaths per 1,000 (CI: 20–28) in the metropolitan Port-au-Prince survey population. The most important predictors of mortality risk were older age, residence in a multilevel structure, high levels of crowding, and location at the time of the earthquake. A better understanding of risk factors associated with earthquake mortality and the risk attributed to the built environment is essential for humanitarian response planning and to implement risk reduction strategies that are feasible in resource-poor settings.

Consent

Respondents were read a statement describing the survey and requesting their participation, and oral consent was obtained prior to initiating the interview.

Endnotes

aMinistry of Transportation and Public Works Building Damage Assessment result for the residence as reported by respondents in the household survey.

Declarations

Acknowledgments

Special thanks to the field team and staff at IDEJEN, a Haitian nonprofit organization, for their support and dedication, and to Project Concern International, Sally Graglia, and Paul Perrin for helping facilitate the study.

Authors’ Affiliations

(1)
Johns Hopkins Bloomberg School of Public Health
(2)
Johns Hopkins Bloomberg School of Medicine

References

  1. UN Habita: Global Report on Human Settlements: Disasters at a Glance. October 1, 2007 press release. . Accessed June 26, 2012 http://www.preventionweb.net/files/1719_519919769dis205.pdf Google Scholar
  2. EM-DAT: The OFDA/CRED International Disaster Database, 2011. Hosted by Université Catholique de Louvain, Brussels, Belgium. Haiti Country Profile. . Accessed June 26 2012 http://www.emdat.be Google Scholar
  3. Bhattacharjee A, Lossio R: Evaluation of OCHA Response to the Haiti Earthquake. 2011. . Accessed June 10, 2011 http://ochanet.unocha.org/p/Documents/Evaluation%20of%20OCHA%20Response%20to%20the%20Haiti%20Earthquake.pdf Google Scholar
  4. Camp Coordination and Camp Management (CCCM) Cluster Haiti: Updated list of IDP sites of the DTM, November 2010 [Data file]. , Accessed Jan 5, 2011 http://groups.google.com/group/cccmhaiti?pli=1
  5. United Nations Institute for Training and Research (Unitar): Commune comparative graph illustrations of Building Damage Assessment. Building Damage Assessment In support to Post Disaster Needs Assessment and Recovery Framework. 2010. , Accessed Jan 5, 2011 http://www.unitar.org/unosat/node/44/1442 Google Scholar
  6. Republique d’Haiti, Ministere de l’Economie et des Finances Institut, Haitien de Statistique et d’Informatique : Population Totale, Population de 18 ans et plus ménages et densities estimes en 2009. , Accessed January 5, 2011 http://ochanet.unocha.org/p/Documents/Evaluation%20of%20OCHA%20Response%20to%20the%20Haiti%20Earthquake.pdf
  7. Kolbe A, Hutson R, Shannon H, Trzcinski E, Miles B, Levitz N: Mortality, crime and access to basic needs before and after the Haiti earthquake: a random survey of Port-au-Prince households. Medicine, Conflict and Survival 2010,26(4):281-297. 10.1080/13623699.2010.535279View ArticleGoogle Scholar
  8. Schwartz T, Pierre YF, Calpas E: Building Assessments and Rubble Removal in Quake-Affected Neighborhoods in Haiti. BARR Final Survey Report. Released May 13, 2011. . Downloaded May 31, 2011 http://pdf.usaid.gov/pdf_docs/PNADY468.pdf Google Scholar
  9. Doocy S, Daniels A, Packer C, Dick A, Kirsch T: The Human Impacts of Earthquakes: a Historic Review of Events 1980-2009 and Systematic Literature Review. PloS Currents: Disasters 2013.Google Scholar
  10. Gutierrez E, Taucer F, De Groeve T, Al-Khudhairy DHA, Zaldivar JM: Analysis of worldwide earthquake mortality using multivariate demographic and seismic data. Am J Epidemiol 2005,161(12):1151-1158. 10.1093/aje/kwi149View ArticlePubMedGoogle Scholar
  11. Spence R: Saving lives in earthquakes: successes and failures in seismic protection since 1960. Bull Earthq Eng 2007,5(2):139-251. 10.1007/s10518-006-9028-8View ArticleGoogle Scholar
  12. Fu ZX, Liu GP, Shao HC, Ding X: Overview on shallow strong earthquake activity and earthquake live losses of Chinese mainland in the centenary from 1901 to 2001. Acta Seismologica Sinica English Edition 2005,18(4):392-401. 10.1007/s11589-005-0016-xView ArticleGoogle Scholar
  13. Alexander D: The health effects of earthquakes in the mid-1990s. Disasters 1996,20(3):231-247. 10.1111/j.1467-7717.1996.tb01036.xView ArticlePubMedGoogle Scholar
  14. Angus DC, Pretto EA, Abrams JI, Ceciliano N, Watoh Y, Kirimli B: Epidemiologic assessment of mortality, building collapse pattern, and medical response after the 1992 earthquake in Turkey. Disaster reanimatology study group (DRSG). Prehosp Disaster Med 1997,12(3):222-231.PubMedGoogle Scholar
  15. Parasuraman S: The impact of the 1993 latur-osmanabad (Maharashtra) earthquake on lives, livelihoods and property. Disasters 1995,19(2):156-169. 10.1111/j.1467-7717.1995.tb00366.xView ArticlePubMedGoogle Scholar
  16. Roces MC, White ME, Dayrit MM, Durkin ME: Risk-factors for injuries due to the 1990 earthquake in Luzon, Philippines. Bull World Health Organ 1992,70(4):509-514.PubMedPubMed CentralGoogle Scholar
  17. Armenian HK, Noji EK, Oganesian AP: A case–control study of injuries arising from the earthquake in Armenia, 1988. Bull World Health Organ 1992,70(2):251-257.PubMedPubMed CentralGoogle Scholar
  18. Bissell RA, Pretto E, Angus DC, Shen B, Ruiz V, Ceciliano N: Post-preparedness medical disaster response in Costa Rica. Prehosp Disaster Med 1994,9(2):96-106.PubMedGoogle Scholar
  19. Pretto EA, Angus DC, Abrams JI, Shen B, Bissell R, Ruiz Castro VM: An analysis of prehospital mortality in an earthquake. Disaster reanimatology study group. Prehosp Disaster Med 1994,9(2):107-117.PubMedGoogle Scholar
  20. Ellidokuz H, Ucku R, Aydin UY, Ellidokuz E: Risk factors for death and injuries in earthquake: cross-sectional study from afyon, turkey. Croat Med J 2005,46(4):613-618.PubMedGoogle Scholar
  21. Coburn AW, Spence RJS, Pomonis A Proceedings of the First International Forum on Earthquake-Related Casualties, Madrid. In Factors determining human casualty levels in earthquakes: Mortality prediction in building collapse. Reston VA: US Geological Survey; 1992.Google Scholar
  22. Tanida N: What happened to elderly people in the great Hanshin earthquake. BMJ (Clinical Research Ed.) 1992,313(7065):1133-1135.View ArticleGoogle Scholar
  23. Armenian HK, Melkonian A, Noji EK, Hovanesian AP: Deaths and injuries due to the earthquake in Armenia: a cohort approach. Int J Epidemiol 1997,26(4):806-813. 10.1093/ije/26.4.806View ArticlePubMedGoogle Scholar
  24. Peek-Asa C, Ramirez MR, Shoaf K, Seligson H, Kraus JF: GIS mapping of earthquake-related deaths and hospital admissions from the 1994 Northridge, California, earthquake. Ann Epidemiol 2000,10(1):5-13. 10.1016/S1047-2797(99)00058-7View ArticlePubMedGoogle Scholar
  25. Liang NJ, Shih YT, Shih FY, Wu HM, Wang HJ, Shi SF: Disaster epidemiology and medical response in the chi-chi earthquake in Taiwan. Ann Emerg Med 2001,38(5):549-555. 10.1067/mem.2001.118999View ArticlePubMedGoogle Scholar
  26. Liao YH, Hwang LC, Chang CC, Hong YJ, Lee IN, Huang JH: Building collapse and human deaths resulting from the chi-chi earthquake in Taiwan, September 1999. Arch Environ Health 2003,58(9):572-578. 10.3200/AEOH.58.9.572-578View ArticlePubMedGoogle Scholar
  27. Pawar AT, Shelke S, Kakrani VK: Rapid assessment survey of earthquake affected Bhuj block of Kachchh District, Guajrat, India. Indian J Med Sci 2005,59(11):488-494. 10.4103/0019-5359.18966View ArticlePubMedGoogle Scholar
  28. Chan CC, Lin YP, Chen HH, Chang TY, Cheng TJ, Chen LS: A population-based study on the immediate and prolonged effects of the 1999 Taiwan earthquake on mortality. Ann Epidemiol 2003,13(7):502-508. 10.1016/S1047-2797(03)00040-1View ArticlePubMedGoogle Scholar
  29. Eberhart-Phillips JE, Saunders TM, Robinson AL, Hatch DL, Parrish RG: Profile of mortality from the 1989 Loma Prieta earthquake using coroner and medical examiner reports. Disasters 1994,18(2):160-170. 10.1111/j.1467-7717.1994.tb00298.xView ArticlePubMedGoogle Scholar
  30. Peek-Asa C, Kraus JF, Bourque LB, Vimalachandra D, Yu J, Abrams J: Fatal and hospitalized injuries resulting from the 1994 Northridge earthquake. Int J Epidemiol 1998,27(3):459-465. 10.1093/ije/27.3.459View ArticlePubMedGoogle Scholar
  31. Tanaka H, Oda J, Iwai A, Kuwagata Y, Matsuoka T, Takaoka M: Morbidity and mortality of hospitalized patients after the 1995 Hanshin- Awaji earthquake. Am J Emerg Med 1997,17(2):186-191.View ArticleGoogle Scholar
  32. Chou YJ, Huang N, Lee CH, Tsai SL, Chen LS, Chang HJ: Who is at risk of death in an earthquake? Am J Epidemiol 2004,160(7):688-695. 10.1093/aje/kwh270View ArticlePubMedGoogle Scholar
  33. Sullivan KM, Hossain SM: Earthquake mortality in Pakistan. Disasters 2010,34(1):176-183. 10.1111/j.1467-7717.2009.01121.xView ArticlePubMedGoogle Scholar
  34. United Nations Office for the Coordination of Humanitarian Affairs (OCHA): Haiti- One year later. , accessed 10 June 2011 http://www.unocha.org/issues-in-depth/haiti-one-year-later
  35. Bilham R: Lessons from the Haiti earthquake. Nature 2010,463(7283):878-879. 10.1038/463878aView ArticlePubMedGoogle Scholar

Copyright

© Doocy et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.