Our analysis for the period 1995-2009 uses the cohort of human-use medicinal products authorized by centralized procedure to show that the development of medicinal products is higher for some diseases than others. The three main therapeutic areas in terms of number of innovative medicinal products were oncology, infectious and parasitic diseases, and blood and endocrine disorders (accounting for 46.8% of active ingredients and 38.4% of marketing authorizations). The results also showed a moderate to high association between the development of medicinal products and disease burden measures for the main disease categories, though some conditions appear to be neglected (related to the health loss generated in the population) as in the case of neuropsychiatric, cardiovascular, respiratory, sense organ, digestive, perinatal diseases, etc. On the contrary, the number of agreed PIPs was not associated with the number of DALYs and deaths among children under 15 years. Therefore, the review of PIPs suggested again that some disease conditions were more neglected than others (related to pediatric health needs), such as perinatal conditions, congenital anomalies, and neuropsychiatric diseases.
The European Medicines Agency is the regulatory authority providing the Member States and the institutions of the EU with scientific advice on quality, safety, and efficacy of medicines. Medicinal products authorized by the centralized procedure can be automatically marketed in all EU Member States. Barbui and Garattini [12] highlighted some issues that can adversely affect assessment of medicinal products for some diseases. First, the centralized procedure is not mandatory for all human-use medicinal products, and different authorization procedures in the EU (e.g., centralized versus mutual recognition/decentralized and national procedures) can result in heterogeneity in terms of authorized medicinal products between countries. Second, new medicinal products can be evaluated without needing to establish comparisons to active treatments. Therefore, a medicinal product can be marketed if it shows a difference versus a placebo (dummy treatment), and in cases where this is not ethical, demonstrating "noninferiority" versus an active comparator is permitted. This can cause uncertainty on the therapeutic role of new medicinal products, as suggested in recent reviews on cancer [13, 14], cardiovascular [15], antirheumatic [16], and central nervous system treatments [17]. From a public health perspective [18–20], the therapeutic value and degree of innovation of medicinal products could also be considered, referring to their added value related to other available options. Some of the items to be highlighted in this approach would include: the relative or incremental value compared with the available alternatives, the evaluation under real conditions of use (comparative effectiveness and safety), or even its incremental costs (efficiency or cost-effectiveness), which is of high value for guiding pricing and reimbursement decisions following the marketing authorization [21, 22].
While there is general concern about the lack of innovation in the development of medicinal products, there is an increased number of active ingredients and of new marketing authorizations. The apparent increase in centrally authorized generics, "biosimilars," and fixed-dose combinations observed over the study period may have contributed to this situation. Furthermore, these results may be a sign of the failure of the pharmaceutical market to anticipate unmet needs and consumer demand.
This analysis also involves some limitations. First, the assessment refers only to medicinal products for human use authorized by centralized procedure. Though there are other alternative procedures, we assumed that the cohort of medicinal products selected here can be considered to be representative of current pharmaceutical innovation. Second, to measure pharmaceutical development output, we used for the primary analyses the data on new marketing authorizations and of active ingredients. Despite being significant measures expressing the productivity of research and development activities, other measures could have been selected instead (e.g., funding for pharmaceutical research, total expenditures per therapeutic area or per DALY lost, etc.). The number of new marketing authorizations and of active ingredients may not be necessarily an indication of the interest in a given disease as they may represent drugs that are structurally similar to already existing ones with only minor pharmaceutical differences (so-called "me-too" drugs). In addition, broader health status measures favorably reflect the results of biomedical research investments. These include lower DALYs lost, lower death rates for chronic diseases, longer life expectancy and improved quality of life for elderly people; and more effective and earlier disease detection [23]. Third, sometimes a medicinal product can be authorized for more than one therapeutic indication in various conditions or diseases (e.g., an anticancer agent for the treatment of solid tumors and hematological malignancies, a psychoanaleptic indicated for depression and diabetic peripheral neuropathic pain, etc.). For the purpose of our analysis, the information can be imperfect as the main indication was chosen. However, we think using the main disease groups and categories instead of subcategories while also using a comprehensive, consistent, and exclusive classification system enabled us to reduce misclassification bias, making the main findings robust.
The approach of this analysis has been used in other areas, such as health services research [24–26]. Surprisingly, little attention has been paid to analyzing disproportionality among population health needs and the development of innovative medicinal products. The parties interested in some diseases or interventions often mention the lack of funds for their disease or intervention without considering the global health implications. A previous report concluded that health research does not reflect the global burden of disease, with less than 10% of resources invested in the study of diseases that contribute 90% of the global burden of disease, also known as the "10/90 gap" [27]. It has been argued that the pharmaceutical industry appears unwilling to fund development of new medicinal products aimed at health needs in middle-low-income countries because the prospects for financial gain for the industry are limited [28]. Our analysis provides information on this matter. We found that nearly 80% (262/338) of the new medicinal products are aimed at less than 50% of health losses (expressed in DALYs) in the world, accounting for 90% of DALYs in high-income countries, as in the case of the EU-25. Although the data appear to indicate that the "10/90 gap" is decreasing, there are still neglected global health needs.
It is noteworthy to mention that the availability of medicines depends partially on the state of research on a particular disease. Indeed, some diseases may require a more significant investment of resources to develop innovative medicines. The lack of novel medicinal products in specific areas may also indicate that there are medicines under patent protection (marketing exclusivity) or that the pharmaceutical market is saturated in those areas. Therefore, the financial rewards for the pharmaceutical industry to develop medicines of relevant therapeutic value may not be profitable enough to assume the risky nature of their investments.
On the other hand, the granting of marketing approval does not necessarily translate into improved availability of medicines. In fact, access to medicines is far from being globally harmonized because price and reimbursement are still matters for countries to consider according to their government policies, health resources, and public health systems [14]. This is particularly important in middle-low-income countries, where there is an access problem either for issues linked to the cost of medicines acquisition, defective health structures, or underdiagnosis. For example, about 5 million people die every year worldwide because of communicable diseases such as diarrheal conditions, HIV/AIDS, tuberculosis, and malaria [10], even though these diseases are treatable (or at least preventable) with current interventions. In the case of noncommunicable diseases such as diabetes or other cardiovascular risk factors (e.g., hypertension, obesity, smoking, etc.) for which interventions (not only medicines) are available, many health systems cannot meet population needs in the poorest communities. Chronic noncommunicable diseases in developing countries are not just diseases of the elderly, since cardiovascular diseases account for as many deaths in young and middle-aged adults as HIV/AIDS. Also, chronic diseases affect a much higher proportion of people in developing countries during their prime working years than they do in developed countries [29]. There are several challenges to public health that require a new global and regional strategic approach, including the availability of medicines for current unmet medical needs, among others [30, 31]. Some investigators have suggested incentives for new medicinal products that are effective against diseases of high societal burden or gravity for populations. These include incentives for novelty, comparative effectiveness and safety, extended patent life, and pricing enhancements for drugs aimed at particular public health needs. Such incentives have been used successfully for vaccines and low-prevalence (orphan) diseases [29].
The European Medicines Agency has recently launched a public consultation on its future actions, based on which it intends to set priorities for coming years. European and international agencies, including medical and patient organizations, the pharmaceutical industry, and citizens have been invited to participate in the document, "Road Map to 2015" [31], including debating how to approach public health needs, promoting research on medicinal products in unmet medical needs areas, or for rare and neglected diseases, providing innovative proposals for drug development.
In this paper, we intended to provide information based on the outcomes of decisions made during 15 years in the European setting. Pharmaceutical industry leaders and policymakers are invited to consider the implications of the imbalance explored in this paper, establishing work plans that allow for defining future priorities from a public health perspective.